TensorRT-LLMs/examples/bloom/weight.py
Kaiyu Xie d8b408e6dc
Update TensorRT-LLM (#148)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-10-27 12:10:00 +08:00

527 lines
22 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import configparser
import time
from pathlib import Path
import numpy as np
import torch
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_np
from tensorrt_llm.models import BloomForCausalLM
from tensorrt_llm.quantization import QuantMode
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return np.ascontiguousarray(np.split(v, tp_size)[idx].copy())
else:
return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx].copy())
def reorder_qkv_weight_or_bias(v, n_head, n_hidden, is_bias=False):
""" Reorder the qkv weight.
Note that the shape of the fused QKV weights in HF is different from the
shape that TRT-LLM requires.
HF: (num_heads x 3 x head_dim, hidden_size)
TRT-LLM: (3 x num_heads x head_dim, hidden_size)
This is unlike to the other models in HF e.g. GPT where they have the
same shape with TRT-LLM, i.e., (3 x num_heads x head_dim, hidden_size). Also,
to split across attention heads in tensor parallel, we reshape the qkv
weight: (3, num_heads x head_dim, hidden).
bias : (3, num_heads x head_dim).
"""
head_dim = n_hidden // n_head
# (3 x hidden, ...) view as (num_heads, 3, head_dim, ...)
v = v.reshape(n_head, 3, head_dim, -1)
# permute to (3, num_heads, head_dim, ...)
v = v.transpose((1, 0, 2, 3))
# final shape: weight=(3, hidden, hidden) or bias=(3, hidden)
if is_bias:
return v.reshape(3, n_hidden)
return v.reshape(3, n_hidden, n_hidden)
def split_qkv_tp(tensorrt_llm_bloom, v, tensor_parallel, rank):
"""
Splits the QKV matrix according to tensor parallelism
"""
n_heads = tensorrt_llm_bloom._num_heads
hidden_size = tensorrt_llm_bloom._hidden_size
v = reorder_qkv_weight_or_bias(v, n_heads, hidden_size, is_bias=False)
split_v = split(v, tensor_parallel, rank, dim=1)
split_v = split_v.reshape(3 * (hidden_size // tensor_parallel), hidden_size)
return np.ascontiguousarray(split_v)
def split_qkv_bias_tp(tensorrt_llm_bloom, v, tensor_parallel, rank):
"""
Splits the QKV bias according to tensor parallelism
"""
layer = tensorrt_llm_bloom.layers[0]
n_heads = layer.num_attention_heads
hidden_size = layer.hidden_size
v = reorder_qkv_weight_or_bias(v, n_heads, hidden_size, is_bias=True)
split_v = split(v, tensor_parallel, rank, dim=1)
split_v = split_v.reshape(3 * (hidden_size // tensor_parallel))
return np.ascontiguousarray(split_v)
def split_matrix_tp(v, tensor_parallel, rank, dim):
return np.ascontiguousarray(split(v, tensor_parallel, rank, dim=dim))
def get_weight(config, prefix, dtype):
return config[prefix + '.weight'].to(dtype).detach().cpu().numpy()
def get_bias(config, prefix, dtype):
return config[prefix + '.bias'].to(dtype).detach().cpu().numpy()
def get_weight_and_bias(config, prefix, dtype):
return get_weight(config, prefix, dtype), get_bias(config, prefix, dtype)
def set_layer_weight(layer, val, quant_mode):
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
use_weight_only = quant_mode.is_weight_only()
if use_weight_only:
v = np.ascontiguousarray(val.transpose())
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
layer.weight.value = processed_torch_weights.numpy()
layer.per_channel_scale.value = torch_weight_scales.numpy()
else:
layer.weight.value = np.ascontiguousarray(val)
def check_embedding_share(dir_path):
share_embedding_table = False
if Path(dir_path).exists():
share_embedding_table = True
return share_embedding_table
def load_from_hf_bloom(tensorrt_llm_bloom,
hf_bloom,
rank=0,
tensor_parallel=1,
fp16=False,
use_parallel_embedding=False,
sharding_dim=0,
share_embedding_table=False):
tensorrt_llm.logger.info('Loading weights from HF BLOOM...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_bloom, 'quant_mode', QuantMode(0))
model_params = dict(hf_bloom.named_parameters())
dtype = torch.float16 if fp16 else torch.float32
for l in range(hf_bloom.config.num_hidden_layers):
prefix = f'transformer.h.{l}.'
qkv_weight, qkv_bias = get_weight_and_bias(
model_params, prefix + 'self_attention.query_key_value', dtype)
split_v = split_qkv_tp(tensorrt_llm_bloom, qkv_weight, tensor_parallel,
rank)
set_layer_weight(tensorrt_llm_bloom.layers[l].attention.qkv, split_v,
quant_mode)
tensorrt_llm_bloom.layers[
l].attention.qkv.bias.value = split_qkv_bias_tp(
tensorrt_llm_bloom, qkv_bias, tensor_parallel, rank)
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
model_params, prefix + 'self_attention.dense', dtype)
split_v = split_matrix_tp(attn_dense_weight,
tensor_parallel,
rank,
dim=1)
set_layer_weight(tensorrt_llm_bloom.layers[l].attention.dense, split_v,
quant_mode)
tensorrt_llm_bloom.layers[
l].attention.dense.bias.value = attn_dense_bias
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(
model_params, prefix + 'mlp.dense_h_to_4h', dtype)
split_v = split_matrix_tp(mlp_fc_weight, tensor_parallel, rank, dim=0)
set_layer_weight(tensorrt_llm_bloom.layers[l].mlp.fc, split_v,
quant_mode)
tensorrt_llm_bloom.layers[l].mlp.fc.bias.value = split_matrix_tp(
mlp_fc_bias, tensor_parallel, rank, dim=0)
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
model_params, prefix + 'mlp.dense_4h_to_h', dtype)
split_v = split_matrix_tp(mlp_proj_weight, tensor_parallel, rank, dim=1)
set_layer_weight(tensorrt_llm_bloom.layers[l].mlp.proj, split_v,
quant_mode)
tensorrt_llm_bloom.layers[l].mlp.proj.bias.value = mlp_proj_bias
# Layer norms do not use tensor parallelism
input_ln_weight, input_ln_bias = get_weight_and_bias(
model_params, prefix + 'input_layernorm', dtype)
tensorrt_llm_bloom.layers[
l].input_layernorm.weight.value = input_ln_weight
tensorrt_llm_bloom.layers[l].input_layernorm.bias.value = input_ln_bias
post_ln_weight, post_ln_bias = get_weight_and_bias(
model_params, prefix + 'post_attention_layernorm', dtype)
tensorrt_llm_bloom.layers[
l].post_layernorm.weight.value = post_ln_weight
tensorrt_llm_bloom.layers[l].post_layernorm.bias.value = post_ln_bias
embed_w = get_weight(model_params, 'transformer.word_embeddings', dtype)
if not share_embedding_table:
tensorrt_llm_bloom.lm_head.weight.value = split_matrix_tp(
embed_w.copy(), tensor_parallel, rank, dim=0)
if not use_parallel_embedding:
tensorrt_llm_bloom.embedding.weight.value = embed_w
else:
assert hf_bloom.config.vocab_size % tensor_parallel == 0
tensorrt_llm_bloom.embedding.weight.value = split_matrix_tp(
embed_w, tensor_parallel, rank, dim=sharding_dim)
embed_f_w, embed_f_b = get_weight_and_bias(
model_params, 'transformer.word_embeddings_layernorm', dtype)
tensorrt_llm_bloom.ln_embed.weight.value = embed_f_w
tensorrt_llm_bloom.ln_embed.bias.value = embed_f_b
ln_f_w, ln_f_b = get_weight_and_bias(model_params, 'transformer.ln_f',
dtype)
tensorrt_llm_bloom.ln_f.weight.value = ln_f_w
tensorrt_llm_bloom.ln_f.bias.value = ln_f_b
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
def gen_suffix(rank, use_smooth_quant, quant_per_channel):
suffix = f"{rank}.bin"
if use_smooth_quant:
sq_prefix = "int8."
if quant_per_channel:
sq_prefix += "col."
suffix = sq_prefix + suffix
return suffix
def extract_layer_idx(name):
ss = name.split('.')
for s in ss:
if s.isdigit():
return s
return None
def parse_config(ini_file):
bloom_config = configparser.ConfigParser()
bloom_config.read(ini_file)
n_embd = bloom_config.getint('bloom', 'hidden_size')
n_head = bloom_config.getint('bloom', 'n_head')
n_layer = bloom_config.getint('bloom', 'n_layer')
vocab_size = bloom_config.getint('bloom', 'vocab_size')
do_layer_norm_before = bloom_config.getboolean('bloom',
'do_layer_norm_before',
fallback=True)
rotary_pct = bloom_config.getfloat('bloom', 'rotary_pct', fallback=0.0)
bias = bloom_config.getboolean('bloom', 'bias', fallback=True)
inter_size = bloom_config.getint('bloom',
'intermediate_size',
fallback=None)
dtype = bloom_config.get('bloom', 'storage_dtype', fallback='float32')
if inter_size is None:
inter_size = 4 * n_embd
multi_query_mode = bloom_config.getboolean('bloom',
'multi_query_mode',
fallback=False)
prompt_num_tasks = bloom_config.getint('bloom',
'prompt_num_tasks',
fallback=0)
prompt_max_vocab_size = bloom_config.getint('bloom',
'prompt_max_vocab_size',
fallback=0)
return n_embd, n_head, n_layer, vocab_size, do_layer_norm_before, rotary_pct, bias, inter_size, multi_query_mode, dtype, prompt_num_tasks, prompt_max_vocab_size
def load_from_bin(tensorrt_llm_bloom: BloomForCausalLM,
dir_path,
rank=0,
tensor_parallel=1,
dtype='float32',
use_parallel_embedding=False,
sharding_dim=0,
share_embedding_table=False):
tensorrt_llm.logger.info('Loading weights from bin...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_bloom, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
torch.int8
elif quant_mode.is_int4_weight_only():
torch.quint4x2
n_embd, n_head, n_layer, vocab_size, do_layer_norm_before, rotary_pct, bias, inter_size, multi_query_mode, *_ = parse_config(
Path(dir_path) / 'config.ini')
np_dtype = str_dtype_to_np(dtype)
def fromfile(dir_path, name, shape=None, dtype=None):
dtype = np_dtype if dtype is None else dtype
p = dir_path + '/' + name
if Path(p).exists():
t = np.fromfile(p, dtype=dtype)
if shape is not None:
t = t.reshape(shape)
return t
return None
def set_smoothquant_scale_factors(module,
pre_scale_weight,
dir_path,
basename,
shape,
per_tok_dyn,
per_channel,
is_qkv=False,
rank=None):
suffix = "bin"
if per_channel:
if rank is not None:
suffix = f"{rank}." + suffix
suffix = "col." + suffix
col_shape = shape if (per_channel or is_qkv) else [1, 1]
if per_tok_dyn:
if pre_scale_weight is not None:
pre_scale_weight.value = np.array([1.0], dtype=np.float32)
t = fromfile(dir_path, f"{basename}scale_w_quant_orig.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
else:
t = fromfile(dir_path, f"{basename}scale_x_orig_quant.bin", [1],
np.float32)
pre_scale_weight.value = t
t = fromfile(dir_path, f"{basename}scale_y_accum_quant.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
t = fromfile(dir_path, f"{basename}scale_y_quant_orig.bin", [1, 1],
np.float32)
module.act_scale.value = t
def set_smoother(module, dir_path, base_name, shape, rank):
suffix = f"{rank}.bin"
t = fromfile(dir_path, f"{base_name}.smoother.{suffix}", shape,
np.float32)
module.smoother.value = t
# Determine the quantization mode.
quant_mode = getattr(tensorrt_llm_bloom, "quant_mode", QuantMode(0))
# Do we use SmoothQuant?
use_smooth_quant = quant_mode.has_act_and_weight_quant()
# Do we use quantization per token?
quant_per_token_dyn = quant_mode.has_per_token_dynamic_scaling()
# Do we use quantization per channel?
quant_per_channel = quant_mode.has_per_channel_scaling()
# Do we use INT4/INT8 weight-only?
quant_mode.is_weight_only()
# Int8 KV cache
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
# Debug
suffix = gen_suffix(rank, use_smooth_quant, quant_per_channel)
# The type of weights.
w_type = np_dtype if not use_smooth_quant else np.int8
vocab_embedding_weight = (fromfile(dir_path, 'model.wpe.bin',
[vocab_size, n_embd]))
embed_w = np.ascontiguousarray(
split(vocab_embedding_weight.copy(), tensor_parallel, rank))
if not share_embedding_table:
tensorrt_llm_bloom.lm_head.weight.value = embed_w
if not use_parallel_embedding:
tensorrt_llm_bloom.embedding.weight.value = np.ascontiguousarray(
vocab_embedding_weight)
else:
assert vocab_size % tensor_parallel == 0
tensorrt_llm_bloom.embedding.weight.value = np.ascontiguousarray(
split(vocab_embedding_weight,
tensor_parallel,
rank,
dim=sharding_dim))
tensorrt_llm_bloom.ln_embed.bias.value = (fromfile(
dir_path, 'model.word_embeddings_layernorm.bias.bin'))
tensorrt_llm_bloom.ln_embed.weight.value = (fromfile(
dir_path, 'model.word_embeddings_layernorm.weight.bin'))
tensorrt_llm_bloom.ln_f.bias.value = (fromfile(
dir_path, 'model.final_layernorm.bias.bin'))
tensorrt_llm_bloom.ln_f.weight.value = (fromfile(
dir_path, 'model.final_layernorm.weight.bin'))
for i in range(n_layer):
c_attn_out_dim = (3 * n_embd //
tensor_parallel) if not multi_query_mode else (
n_embd // tensor_parallel +
(n_embd // n_head) * 2)
tensorrt_llm_bloom.layers[i].input_layernorm.weight.value = (fromfile(
dir_path, 'model.layers.' + str(i) + '.input_layernorm.weight.bin'))
tensorrt_llm_bloom.layers[i].input_layernorm.bias.value = (fromfile(
dir_path, 'model.layers.' + str(i) + '.input_layernorm.bias.bin'))
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.weight.' + suffix,
[n_embd, c_attn_out_dim], w_type)
if t is not None:
layer = tensorrt_llm_bloom.layers[i].attention.qkv
if use_smooth_quant:
layer.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
set_smoothquant_scale_factors(
layer,
tensorrt_llm_bloom.layers[i].input_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.attention.query_key_value.',
[1, c_attn_out_dim],
quant_per_token_dyn,
quant_per_channel,
rank=rank,
is_qkv=True)
else:
set_layer_weight(layer, np.transpose(t, [1, 0]), quant_mode)
if bias:
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.bias.' + str(rank) + '.bin')
if t is not None:
layer.bias.value = np.ascontiguousarray(t)
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.attention.dense.weight.' + suffix,
[n_embd // tensor_parallel, n_embd], w_type)
layer = tensorrt_llm_bloom.layers[i].attention.dense
if use_smooth_quant:
layer.weight.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
dense_scale = getattr(tensorrt_llm_bloom.layers[i].attention,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
layer, dense_scale, dir_path,
'model.layers.' + str(i) + '.attention.dense.', [1, n_embd],
quant_per_token_dyn, quant_per_channel)
# set it to ones if dense layer is not applied smooth quant
# layer.smoother.value = np.ones(
# [1, n_embd // tensor_parallel], dtype=np.float32)
# set it to the real smoother if dense layer is applied smooth quant
set_smoother(layer, dir_path,
'model.layers.' + str(i) + '.attention.dense',
[1, n_embd // tensor_parallel], rank)
else:
set_layer_weight(layer, np.transpose(t, [1, 0]), quant_mode)
if bias:
layer.bias.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.attention.dense.bias.bin')
dst = tensorrt_llm_bloom.layers[i].post_layernorm.weight
dst.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.post_attention_layernorm.weight.bin')
dst = tensorrt_llm_bloom.layers[i].post_layernorm.bias
dst.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.post_attention_layernorm.bias.bin')
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.mlp.dense_h_to_4h.weight.' + suffix,
[n_embd, inter_size // tensor_parallel], w_type)
layer = tensorrt_llm_bloom.layers[i].mlp.fc
if use_smooth_quant:
layer.weight.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
set_smoothquant_scale_factors(
layer,
tensorrt_llm_bloom.layers[i].post_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.mlp.dense_h_to_4h.',
[1, inter_size // tensor_parallel],
quant_per_token_dyn,
quant_per_channel,
rank=rank)
else:
set_layer_weight(layer, np.transpose(t, [1, 0]), quant_mode)
if bias:
layer.bias.value = fromfile(
dir_path, 'model.layers.' + str(i) +
'.mlp.dense_h_to_4h.bias.' + str(rank) + '.bin')
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.weight.' + suffix,
[inter_size // tensor_parallel, n_embd], w_type)
layer = tensorrt_llm_bloom.layers[i].mlp.proj
if use_smooth_quant:
layer.weight.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
proj_scale = getattr(tensorrt_llm_bloom.layers[i].mlp,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
layer, proj_scale, dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.', [1, n_embd],
quant_per_token_dyn, quant_per_channel)
# set it to ones if proj layer is not applied smooth quant
# layer.smoother.value = np.ones(
# [1, inter_size // tensor_parallel], dtype=np.float32)
# set it to the real smoother if proj layer is applied smooth quant
set_smoother(layer, dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h',
[1, inter_size // tensor_parallel], rank)
else:
set_layer_weight(layer, np.transpose(t, [1, 0]), quant_mode)
if bias:
layer.bias.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.bias.bin')
if use_int8_kv_cache:
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.scale_y_quant_orig.bin', [1],
np.float32)
tensorrt_llm_bloom.layers[
i].attention.kv_orig_quant_scale.value = 1.0 / t
tensorrt_llm_bloom.layers[i].attention.kv_quant_orig_scale.value = t
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')