mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
527 lines
22 KiB
Python
527 lines
22 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import configparser
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm._utils import str_dtype_to_np
|
|
from tensorrt_llm.models import BloomForCausalLM
|
|
from tensorrt_llm.quantization import QuantMode
|
|
|
|
|
|
def split(v, tp_size, idx, dim=0):
|
|
if tp_size == 1:
|
|
return v
|
|
if len(v.shape) == 1:
|
|
return np.ascontiguousarray(np.split(v, tp_size)[idx].copy())
|
|
else:
|
|
return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx].copy())
|
|
|
|
|
|
def reorder_qkv_weight_or_bias(v, n_head, n_hidden, is_bias=False):
|
|
""" Reorder the qkv weight.
|
|
|
|
Note that the shape of the fused QKV weights in HF is different from the
|
|
shape that TRT-LLM requires.
|
|
HF: (num_heads x 3 x head_dim, hidden_size)
|
|
TRT-LLM: (3 x num_heads x head_dim, hidden_size)
|
|
This is unlike to the other models in HF e.g. GPT where they have the
|
|
same shape with TRT-LLM, i.e., (3 x num_heads x head_dim, hidden_size). Also,
|
|
to split across attention heads in tensor parallel, we reshape the qkv
|
|
weight: (3, num_heads x head_dim, hidden).
|
|
bias : (3, num_heads x head_dim).
|
|
"""
|
|
|
|
head_dim = n_hidden // n_head
|
|
|
|
# (3 x hidden, ...) view as (num_heads, 3, head_dim, ...)
|
|
v = v.reshape(n_head, 3, head_dim, -1)
|
|
# permute to (3, num_heads, head_dim, ...)
|
|
v = v.transpose((1, 0, 2, 3))
|
|
# final shape: weight=(3, hidden, hidden) or bias=(3, hidden)
|
|
if is_bias:
|
|
return v.reshape(3, n_hidden)
|
|
return v.reshape(3, n_hidden, n_hidden)
|
|
|
|
|
|
def split_qkv_tp(tensorrt_llm_bloom, v, tensor_parallel, rank):
|
|
"""
|
|
Splits the QKV matrix according to tensor parallelism
|
|
"""
|
|
n_heads = tensorrt_llm_bloom._num_heads
|
|
hidden_size = tensorrt_llm_bloom._hidden_size
|
|
v = reorder_qkv_weight_or_bias(v, n_heads, hidden_size, is_bias=False)
|
|
split_v = split(v, tensor_parallel, rank, dim=1)
|
|
split_v = split_v.reshape(3 * (hidden_size // tensor_parallel), hidden_size)
|
|
|
|
return np.ascontiguousarray(split_v)
|
|
|
|
|
|
def split_qkv_bias_tp(tensorrt_llm_bloom, v, tensor_parallel, rank):
|
|
"""
|
|
Splits the QKV bias according to tensor parallelism
|
|
"""
|
|
layer = tensorrt_llm_bloom.layers[0]
|
|
n_heads = layer.num_attention_heads
|
|
hidden_size = layer.hidden_size
|
|
v = reorder_qkv_weight_or_bias(v, n_heads, hidden_size, is_bias=True)
|
|
split_v = split(v, tensor_parallel, rank, dim=1)
|
|
split_v = split_v.reshape(3 * (hidden_size // tensor_parallel))
|
|
return np.ascontiguousarray(split_v)
|
|
|
|
|
|
def split_matrix_tp(v, tensor_parallel, rank, dim):
|
|
return np.ascontiguousarray(split(v, tensor_parallel, rank, dim=dim))
|
|
|
|
|
|
def get_weight(config, prefix, dtype):
|
|
return config[prefix + '.weight'].to(dtype).detach().cpu().numpy()
|
|
|
|
|
|
def get_bias(config, prefix, dtype):
|
|
return config[prefix + '.bias'].to(dtype).detach().cpu().numpy()
|
|
|
|
|
|
def get_weight_and_bias(config, prefix, dtype):
|
|
return get_weight(config, prefix, dtype), get_bias(config, prefix, dtype)
|
|
|
|
|
|
def set_layer_weight(layer, val, quant_mode):
|
|
if quant_mode.is_int8_weight_only():
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_mode.is_int4_weight_only():
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
use_weight_only = quant_mode.is_weight_only()
|
|
|
|
if use_weight_only:
|
|
v = np.ascontiguousarray(val.transpose())
|
|
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(v), plugin_weight_only_quant_type)
|
|
layer.weight.value = processed_torch_weights.numpy()
|
|
layer.per_channel_scale.value = torch_weight_scales.numpy()
|
|
else:
|
|
layer.weight.value = np.ascontiguousarray(val)
|
|
|
|
|
|
def check_embedding_share(dir_path):
|
|
share_embedding_table = False
|
|
if Path(dir_path).exists():
|
|
share_embedding_table = True
|
|
return share_embedding_table
|
|
|
|
|
|
def load_from_hf_bloom(tensorrt_llm_bloom,
|
|
hf_bloom,
|
|
rank=0,
|
|
tensor_parallel=1,
|
|
fp16=False,
|
|
use_parallel_embedding=False,
|
|
sharding_dim=0,
|
|
share_embedding_table=False):
|
|
tensorrt_llm.logger.info('Loading weights from HF BLOOM...')
|
|
tik = time.time()
|
|
|
|
quant_mode = getattr(tensorrt_llm_bloom, 'quant_mode', QuantMode(0))
|
|
|
|
model_params = dict(hf_bloom.named_parameters())
|
|
dtype = torch.float16 if fp16 else torch.float32
|
|
for l in range(hf_bloom.config.num_hidden_layers):
|
|
prefix = f'transformer.h.{l}.'
|
|
|
|
qkv_weight, qkv_bias = get_weight_and_bias(
|
|
model_params, prefix + 'self_attention.query_key_value', dtype)
|
|
split_v = split_qkv_tp(tensorrt_llm_bloom, qkv_weight, tensor_parallel,
|
|
rank)
|
|
set_layer_weight(tensorrt_llm_bloom.layers[l].attention.qkv, split_v,
|
|
quant_mode)
|
|
tensorrt_llm_bloom.layers[
|
|
l].attention.qkv.bias.value = split_qkv_bias_tp(
|
|
tensorrt_llm_bloom, qkv_bias, tensor_parallel, rank)
|
|
|
|
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
|
|
model_params, prefix + 'self_attention.dense', dtype)
|
|
split_v = split_matrix_tp(attn_dense_weight,
|
|
tensor_parallel,
|
|
rank,
|
|
dim=1)
|
|
set_layer_weight(tensorrt_llm_bloom.layers[l].attention.dense, split_v,
|
|
quant_mode)
|
|
tensorrt_llm_bloom.layers[
|
|
l].attention.dense.bias.value = attn_dense_bias
|
|
|
|
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(
|
|
model_params, prefix + 'mlp.dense_h_to_4h', dtype)
|
|
split_v = split_matrix_tp(mlp_fc_weight, tensor_parallel, rank, dim=0)
|
|
set_layer_weight(tensorrt_llm_bloom.layers[l].mlp.fc, split_v,
|
|
quant_mode)
|
|
tensorrt_llm_bloom.layers[l].mlp.fc.bias.value = split_matrix_tp(
|
|
mlp_fc_bias, tensor_parallel, rank, dim=0)
|
|
|
|
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
|
|
model_params, prefix + 'mlp.dense_4h_to_h', dtype)
|
|
split_v = split_matrix_tp(mlp_proj_weight, tensor_parallel, rank, dim=1)
|
|
set_layer_weight(tensorrt_llm_bloom.layers[l].mlp.proj, split_v,
|
|
quant_mode)
|
|
tensorrt_llm_bloom.layers[l].mlp.proj.bias.value = mlp_proj_bias
|
|
|
|
# Layer norms do not use tensor parallelism
|
|
input_ln_weight, input_ln_bias = get_weight_and_bias(
|
|
model_params, prefix + 'input_layernorm', dtype)
|
|
tensorrt_llm_bloom.layers[
|
|
l].input_layernorm.weight.value = input_ln_weight
|
|
tensorrt_llm_bloom.layers[l].input_layernorm.bias.value = input_ln_bias
|
|
|
|
post_ln_weight, post_ln_bias = get_weight_and_bias(
|
|
model_params, prefix + 'post_attention_layernorm', dtype)
|
|
tensorrt_llm_bloom.layers[
|
|
l].post_layernorm.weight.value = post_ln_weight
|
|
tensorrt_llm_bloom.layers[l].post_layernorm.bias.value = post_ln_bias
|
|
|
|
embed_w = get_weight(model_params, 'transformer.word_embeddings', dtype)
|
|
if not share_embedding_table:
|
|
tensorrt_llm_bloom.lm_head.weight.value = split_matrix_tp(
|
|
embed_w.copy(), tensor_parallel, rank, dim=0)
|
|
|
|
if not use_parallel_embedding:
|
|
tensorrt_llm_bloom.embedding.weight.value = embed_w
|
|
else:
|
|
assert hf_bloom.config.vocab_size % tensor_parallel == 0
|
|
tensorrt_llm_bloom.embedding.weight.value = split_matrix_tp(
|
|
embed_w, tensor_parallel, rank, dim=sharding_dim)
|
|
|
|
embed_f_w, embed_f_b = get_weight_and_bias(
|
|
model_params, 'transformer.word_embeddings_layernorm', dtype)
|
|
tensorrt_llm_bloom.ln_embed.weight.value = embed_f_w
|
|
tensorrt_llm_bloom.ln_embed.bias.value = embed_f_b
|
|
|
|
ln_f_w, ln_f_b = get_weight_and_bias(model_params, 'transformer.ln_f',
|
|
dtype)
|
|
tensorrt_llm_bloom.ln_f.weight.value = ln_f_w
|
|
tensorrt_llm_bloom.ln_f.bias.value = ln_f_b
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|
|
|
|
|
|
def gen_suffix(rank, use_smooth_quant, quant_per_channel):
|
|
suffix = f"{rank}.bin"
|
|
if use_smooth_quant:
|
|
sq_prefix = "int8."
|
|
if quant_per_channel:
|
|
sq_prefix += "col."
|
|
suffix = sq_prefix + suffix
|
|
return suffix
|
|
|
|
|
|
def extract_layer_idx(name):
|
|
ss = name.split('.')
|
|
for s in ss:
|
|
if s.isdigit():
|
|
return s
|
|
return None
|
|
|
|
|
|
def parse_config(ini_file):
|
|
bloom_config = configparser.ConfigParser()
|
|
bloom_config.read(ini_file)
|
|
|
|
n_embd = bloom_config.getint('bloom', 'hidden_size')
|
|
n_head = bloom_config.getint('bloom', 'n_head')
|
|
n_layer = bloom_config.getint('bloom', 'n_layer')
|
|
vocab_size = bloom_config.getint('bloom', 'vocab_size')
|
|
do_layer_norm_before = bloom_config.getboolean('bloom',
|
|
'do_layer_norm_before',
|
|
fallback=True)
|
|
rotary_pct = bloom_config.getfloat('bloom', 'rotary_pct', fallback=0.0)
|
|
bias = bloom_config.getboolean('bloom', 'bias', fallback=True)
|
|
inter_size = bloom_config.getint('bloom',
|
|
'intermediate_size',
|
|
fallback=None)
|
|
dtype = bloom_config.get('bloom', 'storage_dtype', fallback='float32')
|
|
|
|
if inter_size is None:
|
|
inter_size = 4 * n_embd
|
|
|
|
multi_query_mode = bloom_config.getboolean('bloom',
|
|
'multi_query_mode',
|
|
fallback=False)
|
|
prompt_num_tasks = bloom_config.getint('bloom',
|
|
'prompt_num_tasks',
|
|
fallback=0)
|
|
prompt_max_vocab_size = bloom_config.getint('bloom',
|
|
'prompt_max_vocab_size',
|
|
fallback=0)
|
|
return n_embd, n_head, n_layer, vocab_size, do_layer_norm_before, rotary_pct, bias, inter_size, multi_query_mode, dtype, prompt_num_tasks, prompt_max_vocab_size
|
|
|
|
|
|
def load_from_bin(tensorrt_llm_bloom: BloomForCausalLM,
|
|
dir_path,
|
|
rank=0,
|
|
tensor_parallel=1,
|
|
dtype='float32',
|
|
use_parallel_embedding=False,
|
|
sharding_dim=0,
|
|
share_embedding_table=False):
|
|
tensorrt_llm.logger.info('Loading weights from bin...')
|
|
tik = time.time()
|
|
|
|
quant_mode = getattr(tensorrt_llm_bloom, 'quant_mode', QuantMode(0))
|
|
if quant_mode.is_int8_weight_only():
|
|
torch.int8
|
|
elif quant_mode.is_int4_weight_only():
|
|
torch.quint4x2
|
|
n_embd, n_head, n_layer, vocab_size, do_layer_norm_before, rotary_pct, bias, inter_size, multi_query_mode, *_ = parse_config(
|
|
Path(dir_path) / 'config.ini')
|
|
np_dtype = str_dtype_to_np(dtype)
|
|
|
|
def fromfile(dir_path, name, shape=None, dtype=None):
|
|
dtype = np_dtype if dtype is None else dtype
|
|
p = dir_path + '/' + name
|
|
if Path(p).exists():
|
|
t = np.fromfile(p, dtype=dtype)
|
|
if shape is not None:
|
|
t = t.reshape(shape)
|
|
return t
|
|
return None
|
|
|
|
def set_smoothquant_scale_factors(module,
|
|
pre_scale_weight,
|
|
dir_path,
|
|
basename,
|
|
shape,
|
|
per_tok_dyn,
|
|
per_channel,
|
|
is_qkv=False,
|
|
rank=None):
|
|
suffix = "bin"
|
|
if per_channel:
|
|
if rank is not None:
|
|
suffix = f"{rank}." + suffix
|
|
suffix = "col." + suffix
|
|
|
|
col_shape = shape if (per_channel or is_qkv) else [1, 1]
|
|
if per_tok_dyn:
|
|
if pre_scale_weight is not None:
|
|
pre_scale_weight.value = np.array([1.0], dtype=np.float32)
|
|
t = fromfile(dir_path, f"{basename}scale_w_quant_orig.{suffix}",
|
|
col_shape, np.float32)
|
|
module.per_channel_scale.value = t
|
|
else:
|
|
t = fromfile(dir_path, f"{basename}scale_x_orig_quant.bin", [1],
|
|
np.float32)
|
|
pre_scale_weight.value = t
|
|
t = fromfile(dir_path, f"{basename}scale_y_accum_quant.{suffix}",
|
|
col_shape, np.float32)
|
|
module.per_channel_scale.value = t
|
|
t = fromfile(dir_path, f"{basename}scale_y_quant_orig.bin", [1, 1],
|
|
np.float32)
|
|
module.act_scale.value = t
|
|
|
|
def set_smoother(module, dir_path, base_name, shape, rank):
|
|
suffix = f"{rank}.bin"
|
|
t = fromfile(dir_path, f"{base_name}.smoother.{suffix}", shape,
|
|
np.float32)
|
|
module.smoother.value = t
|
|
|
|
# Determine the quantization mode.
|
|
quant_mode = getattr(tensorrt_llm_bloom, "quant_mode", QuantMode(0))
|
|
# Do we use SmoothQuant?
|
|
use_smooth_quant = quant_mode.has_act_and_weight_quant()
|
|
# Do we use quantization per token?
|
|
quant_per_token_dyn = quant_mode.has_per_token_dynamic_scaling()
|
|
# Do we use quantization per channel?
|
|
quant_per_channel = quant_mode.has_per_channel_scaling()
|
|
|
|
# Do we use INT4/INT8 weight-only?
|
|
quant_mode.is_weight_only()
|
|
|
|
# Int8 KV cache
|
|
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
|
|
|
|
# Debug
|
|
suffix = gen_suffix(rank, use_smooth_quant, quant_per_channel)
|
|
# The type of weights.
|
|
w_type = np_dtype if not use_smooth_quant else np.int8
|
|
|
|
vocab_embedding_weight = (fromfile(dir_path, 'model.wpe.bin',
|
|
[vocab_size, n_embd]))
|
|
embed_w = np.ascontiguousarray(
|
|
split(vocab_embedding_weight.copy(), tensor_parallel, rank))
|
|
if not share_embedding_table:
|
|
tensorrt_llm_bloom.lm_head.weight.value = embed_w
|
|
|
|
if not use_parallel_embedding:
|
|
tensorrt_llm_bloom.embedding.weight.value = np.ascontiguousarray(
|
|
vocab_embedding_weight)
|
|
else:
|
|
assert vocab_size % tensor_parallel == 0
|
|
tensorrt_llm_bloom.embedding.weight.value = np.ascontiguousarray(
|
|
split(vocab_embedding_weight,
|
|
tensor_parallel,
|
|
rank,
|
|
dim=sharding_dim))
|
|
|
|
tensorrt_llm_bloom.ln_embed.bias.value = (fromfile(
|
|
dir_path, 'model.word_embeddings_layernorm.bias.bin'))
|
|
tensorrt_llm_bloom.ln_embed.weight.value = (fromfile(
|
|
dir_path, 'model.word_embeddings_layernorm.weight.bin'))
|
|
|
|
tensorrt_llm_bloom.ln_f.bias.value = (fromfile(
|
|
dir_path, 'model.final_layernorm.bias.bin'))
|
|
tensorrt_llm_bloom.ln_f.weight.value = (fromfile(
|
|
dir_path, 'model.final_layernorm.weight.bin'))
|
|
|
|
for i in range(n_layer):
|
|
c_attn_out_dim = (3 * n_embd //
|
|
tensor_parallel) if not multi_query_mode else (
|
|
n_embd // tensor_parallel +
|
|
(n_embd // n_head) * 2)
|
|
tensorrt_llm_bloom.layers[i].input_layernorm.weight.value = (fromfile(
|
|
dir_path, 'model.layers.' + str(i) + '.input_layernorm.weight.bin'))
|
|
tensorrt_llm_bloom.layers[i].input_layernorm.bias.value = (fromfile(
|
|
dir_path, 'model.layers.' + str(i) + '.input_layernorm.bias.bin'))
|
|
|
|
t = fromfile(
|
|
dir_path, 'model.layers.' + str(i) +
|
|
'.attention.query_key_value.weight.' + suffix,
|
|
[n_embd, c_attn_out_dim], w_type)
|
|
if t is not None:
|
|
layer = tensorrt_llm_bloom.layers[i].attention.qkv
|
|
if use_smooth_quant:
|
|
layer.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
set_smoothquant_scale_factors(
|
|
layer,
|
|
tensorrt_llm_bloom.layers[i].input_layernorm.scale_to_int,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.query_key_value.',
|
|
[1, c_attn_out_dim],
|
|
quant_per_token_dyn,
|
|
quant_per_channel,
|
|
rank=rank,
|
|
is_qkv=True)
|
|
else:
|
|
set_layer_weight(layer, np.transpose(t, [1, 0]), quant_mode)
|
|
if bias:
|
|
t = fromfile(
|
|
dir_path, 'model.layers.' + str(i) +
|
|
'.attention.query_key_value.bias.' + str(rank) + '.bin')
|
|
if t is not None:
|
|
layer.bias.value = np.ascontiguousarray(t)
|
|
|
|
t = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.dense.weight.' + suffix,
|
|
[n_embd // tensor_parallel, n_embd], w_type)
|
|
layer = tensorrt_llm_bloom.layers[i].attention.dense
|
|
if use_smooth_quant:
|
|
layer.weight.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
dense_scale = getattr(tensorrt_llm_bloom.layers[i].attention,
|
|
"quantization_scaling_factor", None)
|
|
set_smoothquant_scale_factors(
|
|
layer, dense_scale, dir_path,
|
|
'model.layers.' + str(i) + '.attention.dense.', [1, n_embd],
|
|
quant_per_token_dyn, quant_per_channel)
|
|
# set it to ones if dense layer is not applied smooth quant
|
|
# layer.smoother.value = np.ones(
|
|
# [1, n_embd // tensor_parallel], dtype=np.float32)
|
|
# set it to the real smoother if dense layer is applied smooth quant
|
|
set_smoother(layer, dir_path,
|
|
'model.layers.' + str(i) + '.attention.dense',
|
|
[1, n_embd // tensor_parallel], rank)
|
|
else:
|
|
set_layer_weight(layer, np.transpose(t, [1, 0]), quant_mode)
|
|
if bias:
|
|
layer.bias.value = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.dense.bias.bin')
|
|
|
|
dst = tensorrt_llm_bloom.layers[i].post_layernorm.weight
|
|
dst.value = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.post_attention_layernorm.weight.bin')
|
|
dst = tensorrt_llm_bloom.layers[i].post_layernorm.bias
|
|
dst.value = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.post_attention_layernorm.bias.bin')
|
|
|
|
t = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.mlp.dense_h_to_4h.weight.' + suffix,
|
|
[n_embd, inter_size // tensor_parallel], w_type)
|
|
layer = tensorrt_llm_bloom.layers[i].mlp.fc
|
|
if use_smooth_quant:
|
|
layer.weight.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
set_smoothquant_scale_factors(
|
|
layer,
|
|
tensorrt_llm_bloom.layers[i].post_layernorm.scale_to_int,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.mlp.dense_h_to_4h.',
|
|
[1, inter_size // tensor_parallel],
|
|
quant_per_token_dyn,
|
|
quant_per_channel,
|
|
rank=rank)
|
|
else:
|
|
set_layer_weight(layer, np.transpose(t, [1, 0]), quant_mode)
|
|
if bias:
|
|
layer.bias.value = fromfile(
|
|
dir_path, 'model.layers.' + str(i) +
|
|
'.mlp.dense_h_to_4h.bias.' + str(rank) + '.bin')
|
|
|
|
t = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.weight.' + suffix,
|
|
[inter_size // tensor_parallel, n_embd], w_type)
|
|
layer = tensorrt_llm_bloom.layers[i].mlp.proj
|
|
if use_smooth_quant:
|
|
layer.weight.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
proj_scale = getattr(tensorrt_llm_bloom.layers[i].mlp,
|
|
"quantization_scaling_factor", None)
|
|
set_smoothquant_scale_factors(
|
|
layer, proj_scale, dir_path,
|
|
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.', [1, n_embd],
|
|
quant_per_token_dyn, quant_per_channel)
|
|
# set it to ones if proj layer is not applied smooth quant
|
|
# layer.smoother.value = np.ones(
|
|
# [1, inter_size // tensor_parallel], dtype=np.float32)
|
|
# set it to the real smoother if proj layer is applied smooth quant
|
|
set_smoother(layer, dir_path,
|
|
'model.layers.' + str(i) + '.mlp.dense_4h_to_h',
|
|
[1, inter_size // tensor_parallel], rank)
|
|
else:
|
|
set_layer_weight(layer, np.transpose(t, [1, 0]), quant_mode)
|
|
if bias:
|
|
layer.bias.value = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.bias.bin')
|
|
|
|
if use_int8_kv_cache:
|
|
t = fromfile(
|
|
dir_path, 'model.layers.' + str(i) +
|
|
'.attention.query_key_value.scale_y_quant_orig.bin', [1],
|
|
np.float32)
|
|
tensorrt_llm_bloom.layers[
|
|
i].attention.kv_orig_quant_scale.value = 1.0 / t
|
|
tensorrt_llm_bloom.layers[i].attention.kv_quant_orig_scale.value = t
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|