TensorRT-LLMs/examples/gptj/build.py
Kaiyu Xie f044eb8d94
Update TensorRT-LLM (#302)
* Update TensorRT-LLM

---------

Co-authored-by: wangruohui <12756472+wangruohui@users.noreply.github.com>
2023-11-07 19:51:58 +08:00

517 lines
20 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import time
from pathlib import Path
import tensorrt as trt
import torch
import torch.multiprocessing as mp
from transformers import AutoModelForCausalLM
from weight import (get_scaling_factors, load_from_awq_gpt_j,
load_from_bin_gpt_j, load_from_hf_gpt_j, parse_config)
import tensorrt_llm
from tensorrt_llm.builder import Builder
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import quantize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
MODEL_NAME = "gptj"
hf_gpt = None
awq_gptj_config = None
def get_engine_name(model, dtype, tp_size, rank):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(bytearray(engine))
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def parse_arguments(args):
parser = argparse.ArgumentParser()
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
parser.add_argument(
'--model_dir',
type=str,
default=None,
help='The path to HF GPT-J model / checkpoints to read weights from')
parser.add_argument(
'--ft_model_dir',
type=str,
default=None,
help=
'The path to FT-format (binary) GPT-J model / checkpoints to read weights from'
)
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float16', 'float32'])
parser.add_argument('--logits_dtype',
type=str,
default='float32',
choices=['float16', 'float32'])
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help=
'The path of to read timing cache from, will be ignored if the file does not exist'
)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--vocab_size', type=int, default=50401)
parser.add_argument('--n_layer', type=int, default=28)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_embd', type=int, default=4096)
parser.add_argument('--n_head', type=int, default=16)
parser.add_argument('--hidden_act', type=str, default='gelu')
parser.add_argument('--rotary_dim', type=int, default=64)
parser.add_argument('--max_batch_size', type=int, default=256)
parser.add_argument('--max_input_len', type=int, default=200)
parser.add_argument('--max_output_len', type=int, default=200)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument('--use_gpt_attention_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--use_layernorm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--parallel_build', default=False, action='store_true')
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha_fp32_acc',
default=False,
action='store_true')
parser.add_argument('--gpus_per_node', type=int, default=8)
parser.add_argument(
'--output_dir',
type=str,
default='gpt_outputs',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
parser.add_argument('--enable_fp8', default=False, action='store_true')
parser.add_argument(
'--quantized_fp8_model_path',
type=str,
default=None,
help='Path of a quantized model checkpoint that in .npz format')
parser.add_argument(
'--fp8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. fp8_kv_cache chooses fp8 quantization for KV'
)
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--use_inflight_batching',
action="store_true",
default=False,
help="Activates inflight batching mode of gptAttentionPlugin.")
parser.add_argument(
'--paged_kv_cache',
action="store_true",
default=False,
help=
'By default we use contiguous KV cache. By setting this flag you enable paged KV cache'
)
parser.add_argument('--tokens_per_block',
type=int,
default=64,
help='Number of tokens per block in paged KV cache')
parser.add_argument(
'--max_num_tokens',
type=int,
default=None,
help='Define the max number of tokens supported by the engine')
parser.add_argument(
'--per_group',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale weights in the int4 range. '
'per_group chooses at run time, and for each group, a custom scaling factor. '
'The flag is built for GPTQ/AWQ quantization.')
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--strongly_typed',
default=False,
action="store_true",
help=
'This option is introduced with trt 9.1.0.1+ and will reduce the building time significantly for fp8.'
)
args = parser.parse_args(args)
logger.set_level(args.log_level)
if not args.remove_input_padding:
if args.use_gpt_attention_plugin:
logger.warning(
f"It is recommended to specify --remove_input_padding when using GPT attention plugin"
)
if args.model_dir is not None:
global hf_gpt
if args.use_weight_only and args.weight_only_precision == 'int4' and args.per_group:
logger.info(f'Loading AWQ GPTJ model from {args.model_dir}...')
global awq_gptj_config
with open(args.model_dir + "/config.json",
encoding='utf-8') as config_file:
awq_gptj_config = json.load(config_file)
args.n_embd = awq_gptj_config['n_embd']
args.n_head = awq_gptj_config['n_head']
args.n_layer = awq_gptj_config['n_layer']
args.n_positions = awq_gptj_config['n_positions']
args.vocab_size = awq_gptj_config['vocab_size']
if args.vocab_size % 64 != 0:
args.vocab_size = int(
(awq_gptj_config['vocab_size'] + 63) / 64) * 64
print(
"vocab_size is {}, to use awq we pad it to {}.".format(
awq_gptj_config['vocab_size'], args.vocab_size))
hf_gpt = torch.load(args.model_dir + "/gptj_quantized.pth")
else:
logger.info(f'Loading HF GPTJ model from {args.model_dir}...')
hf_gpt = AutoModelForCausalLM.from_pretrained(args.model_dir)
args.n_embd = hf_gpt.config.n_embd
args.n_head = hf_gpt.config.n_head
args.n_layer = hf_gpt.config.n_layer
args.n_positions = hf_gpt.config.n_positions
args.vocab_size = hf_gpt.config.vocab_size
elif args.ft_model_dir is not None:
logger.info(f"Setting model configuration from {args.ft_model_dir}.")
n_embd, n_head, n_layer, n_positions, vocab_size, _, hidden_act, rotary_pct, bias, inter_size, multi_query_mode, dtype, prompt_num_tasks, prompt_max_vocab_size = parse_config(
Path(args.ft_model_dir) / "config.ini")
args.n_embd = n_embd
args.n_head = n_head
args.n_layer = n_layer
args.n_positions = n_positions
args.vocab_size = vocab_size
args.hidden_act = hidden_act
args.rotary_pct = rotary_pct
args.bias = bias
args.dtype = dtype
args.inter_size = inter_size
args.multi_query_mode = multi_query_mode
if args.use_weight_only:
if args.per_group:
assert args.weight_only_precision == 'int4', "We only support per-group quantization (AWQ/GPT-Q) with INT4 precision"
args.quant_mode = QuantMode.from_description(
quantize_weights=True,
quantize_activations=False,
per_token=False,
per_channel=False,
per_group=True,
use_int4_weights=True)
else:
args.quant_mode = QuantMode.use_weight_only(
args.weight_only_precision == 'int4')
else:
args.quant_mode = QuantMode(0)
if args.int8_kv_cache:
args.quant_mode = args.quant_mode.set_int8_kv_cache()
elif args.fp8_kv_cache:
assert (
args.use_gpt_attention_plugin
), "You have to use GPT attention plugin when fp8 KV cache is set"
args.quant_mode = args.quant_mode.set_fp8_kv_cache()
if args.enable_fp8:
args.quant_mode = args.quant_mode.set_fp8_qdq()
if args.use_inflight_batching:
if not args.use_gpt_attention_plugin:
args.use_gpt_attention_plugin = 'float16'
logger.info(
f"Using GPT attention plugin for inflight batching mode. Setting to default '{args.use_gpt_attention_plugin}'"
)
if not args.remove_input_padding:
args.remove_input_padding = True
logger.info(
"Using remove input padding for inflight batching mode.")
if not args.paged_kv_cache:
args.paged_kv_cache = True
logger.info("Using paged KV cache for inflight batching mode.")
if args.max_num_tokens is not None:
assert args.enable_context_fmha
return args
def build_rank_engine(builder: Builder,
builder_config: tensorrt_llm.builder.BuilderConfig,
engine_name, rank, args):
'''
@brief: Build the engine on the given rank.
@param rank: The rank to build the engine.
@param args: The cmd line arguments.
@return: The built engine.
'''
kv_dtype = trt.float16 if args.dtype == 'float16' else trt.float32
mapping = Mapping(world_size=args.world_size,
rank=rank,
tp_size=args.world_size) # TP only
# Initialize Module
tensorrt_llm_gpt = tensorrt_llm.models.GPTJForCausalLM(
num_layers=args.n_layer,
num_heads=args.n_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
rotary_dim=args.rotary_dim,
dtype=kv_dtype,
logits_dtype=args.logits_dtype,
mapping=mapping,
quant_mode=args.quant_mode)
quantize_kwargs = {}
if args.use_weight_only and args.per_group:
assert args.weight_only_precision == 'int4'
quantize_kwargs = {
"group_size": 128,
"zero": False,
"pre_quant_scale": True,
"exclude_modules": [],
}
tensorrt_llm_gpt = quantize_model(tensorrt_llm_gpt, args.quant_mode,
**quantize_kwargs)
if args.model_dir is not None:
assert hf_gpt is not None, f'Could not load weights from hf_gpt model as it is not loaded yet.'
if args.enable_fp8:
gptj_scaling_factors = get_scaling_factors(
args.quantized_fp8_model_path, args.n_layer, args.quant_mode)
else:
gptj_scaling_factors = None
if args.use_weight_only and args.weight_only_precision == 'int4' and args.per_group:
load_from_awq_gpt_j(tensorrt_llm_gpt,
awq_gpt_j=hf_gpt,
ft_model_dir=args.ft_model_dir,
config=awq_gptj_config,
mapping=mapping,
fp16=(args.dtype == 'float16'))
else:
load_from_hf_gpt_j(tensorrt_llm_gpt,
hf_gpt,
fp16=(args.dtype == 'float16'),
scaling_factors=gptj_scaling_factors)
elif args.ft_model_dir is not None:
load_from_bin_gpt_j(tensorrt_llm_gpt, args.ft_model_dir, rank,
args.world_size, args.dtype)
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.use_gemm_plugin:
if not args.enable_fp8:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
else:
logger.info(
"Gemm plugin does not support FP8. Disabled Gemm plugin.")
if args.use_layernorm_plugin:
network.plugin_config.set_layernorm_plugin(
dtype=args.use_layernorm_plugin)
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.enable_context_fmha_fp32_acc:
network.plugin_config.set_context_fmha(
ContextFMHAType.enabled_with_fp32_acc)
if args.use_weight_only:
if args.per_group:
network.plugin_config.set_weight_only_groupwise_quant_matmul_plugin(
dtype='float16')
else:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype='float16')
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if args.paged_kv_cache:
network.plugin_config.enable_paged_kv_cache(args.tokens_per_block)
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_gpt.named_parameters())
# Forward
inputs = tensorrt_llm_gpt.prepare_inputs(
args.max_batch_size,
args.max_input_len,
args.max_output_len,
True,
args.max_beam_width,
max_num_tokens=args.max_num_tokens)
tensorrt_llm_gpt(*inputs)
tensorrt_llm.graph_rewriting.optimize(network)
engine = None
# Network -> Engine
engine = builder.build_engine(network, builder_config)
if rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder.save_config(builder_config, config_path)
tensorrt_llm.tools.cleanup(network, tensorrt_llm_gpt)
return engine
def build(rank, args):
torch.cuda.set_device(rank % args.gpus_per_node)
tensorrt_llm.logger.set_level(args.log_level)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# when doing serializing build, all ranks share one engine
builder = Builder()
cache = None
for cur_rank in range(args.world_size):
# skip other ranks if parallel_build is enabled
if args.parallel_build and cur_rank != rank:
continue
# NOTE(nkorobov): when only int8 kv cache is used together with paged kv cache no int8 tensors are exposed to TRT
int8_trt_flag = args.quant_mode.has_act_and_weight_quant() or (
not args.paged_kv_cache and args.quant_mode.has_int8_kv_cache())
builder_config = builder.create_builder_config(
name=MODEL_NAME,
precision=args.dtype,
timing_cache=args.timing_cache if cache is None else cache,
tensor_parallel=args.world_size, # TP only
parallel_build=args.parallel_build,
num_layers=args.n_layer,
num_heads=args.n_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len,
max_num_tokens=args.max_num_tokens,
fp8=args.enable_fp8,
int8=int8_trt_flag,
quant_mode=args.quant_mode,
strongly_typed=args.strongly_typed)
engine_name = get_engine_name(MODEL_NAME, args.dtype, args.world_size,
cur_rank)
engine = build_rank_engine(builder, builder_config, engine_name,
cur_rank, args)
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
if cur_rank == 0:
# Use in-memory timing cache for multiple builder passes.
if not args.parallel_build:
cache = builder_config.trt_builder_config.get_timing_cache()
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
if rank == 0:
ok = builder.save_timing_cache(
builder_config, os.path.join(args.output_dir, "model.cache"))
assert ok, "Failed to save timing cache."
def run_build(args=None):
args = parse_arguments(args)
tik = time.time()
if args.parallel_build and args.world_size > 1 and \
torch.cuda.device_count() >= args.world_size:
logger.warning(
f'Parallelly build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
)
mp.spawn(build, nprocs=args.world_size, args=(args, ))
else:
args.parallel_build = False
logger.info('Serially build TensorRT engines.')
build(0, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all {args.world_size} engines: {t}')
if __name__ == '__main__':
run_build()