TensorRT-LLMs/examples/llama/hf_llama_convert.py
Kaiyu Xie f044eb8d94
Update TensorRT-LLM (#302)
* Update TensorRT-LLM

---------

Co-authored-by: wangruohui <12756472+wangruohui@users.noreply.github.com>
2023-11-07 19:51:58 +08:00

333 lines
13 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Convert huggingface GPT model. Use https://huggingface.co/gpt2 as demo.
'''
import argparse
import configparser
import os
from pathlib import Path
import torch
import torch.multiprocessing as multiprocessing
from convert import split_and_save_weight, str_to_np_dtype
from smoothquant import (capture_activation_range, smooth_gemm,
smooth_gemm_fc1_gate)
from tqdm import tqdm
from transformers import LlamaForCausalLM, LlamaTokenizer
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
def merge_qkv_scales(q_name, hf_model, scales, llama_qkv_para):
layer_name_q = q_name.replace(".weight", "")
layer_name_k = layer_name_q.replace("q_proj", "k_proj")
layer_name_v = layer_name_q.replace("q_proj", "v_proj")
layer_name_qkv = layer_name_q.replace("q_proj", "qkv_proj")
q = hf_model.state_dict()[layer_name_q + ".weight"]
k = hf_model.state_dict()[layer_name_k + ".weight"]
v = hf_model.state_dict()[layer_name_v + ".weight"]
weight = torch.cat([q, k, v], dim=0)
scales[layer_name_qkv]["x"] = scales[layer_name_q]["x"]
scales[layer_name_qkv]["w"] = weight.abs().max(dim=1)[0]
scales[layer_name_qkv]["y"] = torch.cat([
scales[layer_name_q]["y"], scales[layer_name_k]["y"],
scales[layer_name_v]["y"]
],
dim=0)
llama_qkv_para[layer_name_qkv] = weight.transpose(0, 1)
@torch.no_grad()
def smooth_llama_model(model, scales, alpha, llama_qkv_para, llama_smoother):
# Smooth the activation and weights with smoother = $\diag{s}$
for name, module in model.named_modules():
if not isinstance(module, LlamaDecoderLayer):
continue
# qkv_proj
layer_name_q = name + ".self_attn.q_proj"
layer_name_k = name + ".self_attn.k_proj"
layer_name_v = name + ".self_attn.v_proj"
layer_name_qkv = name + ".self_attn.qkv_proj"
weight = torch.cat([
module.self_attn.q_proj.weight, module.self_attn.k_proj.weight,
module.self_attn.v_proj.weight
],
dim=0)
smoother = smooth_gemm(weight, scales[layer_name_q]["x"],
module.input_layernorm.weight, None, alpha)
scales[layer_name_qkv]["x"] = scales[layer_name_q]["x"] / smoother
scales[layer_name_qkv]["w"] = weight.abs().max(dim=1)[0]
scales[layer_name_qkv]["y"] = torch.cat([
scales[layer_name_q]["y"], scales[layer_name_k]["y"],
scales[layer_name_v]["y"]
],
dim=0)
# see transpose_weights function
llama_qkv_para[layer_name_qkv] = weight.transpose(0, 1)
# =================================================================
layer_name = name + ".self_attn.o_proj"
smoother = smooth_gemm(module.self_attn.o_proj.weight,
scales[layer_name]["x"], None, None, alpha)
llama_smoother[layer_name] = smoother.float()
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.self_attn.o_proj.weight.abs().max(
dim=1)[0]
# ==================================================================
fc1_layer_name = name + ".mlp.gate_proj"
gate_layer_name = name + ".mlp.up_proj"
smoother = smooth_gemm_fc1_gate(module.mlp.gate_proj.weight,
module.mlp.up_proj.weight,
scales[fc1_layer_name]["x"],
module.post_attention_layernorm.weight,
None, alpha)
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
scales[fc1_layer_name]["w"] = module.mlp.gate_proj.weight.abs().max(
dim=1)[0]
scales[gate_layer_name]["x"] = scales[gate_layer_name]["x"] / smoother
scales[gate_layer_name]["w"] = module.mlp.up_proj.weight.abs().max(
dim=1)[0]
# ==================================================================
layer_name = name + ".mlp.down_proj"
smoother = smooth_gemm(module.mlp.down_proj.weight,
scales[layer_name]["x"], None, None, alpha)
llama_smoother[layer_name] = smoother.float()
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.mlp.down_proj.weight.abs().max(
dim=1)[0]
def gpt_to_ft_name(orig_name):
global_ft_weights = {
"model.embed_tokens.weight": 'vocab_embedding.weight',
"model.norm.weight": 'ln_f.weight',
"lm_head.weight": 'lm_head.weight',
}
if orig_name in global_ft_weights:
return global_ft_weights[orig_name]
_, _, layer_id, *weight_name = orig_name.split(".")
layer_id = int(layer_id)
weight_name = ".".join(weight_name)
if weight_name == 'self_attn.q_proj.weight':
return f"layers.{layer_id}.attention.query_key_value.weight"
elif weight_name == 'self_attn.k_proj.weight' or weight_name == 'self_attn.v_proj.weight':
return f"layers.{layer_id}.attention.kv.weight"
per_layer_weights = {
"input_layernorm.weight": "input_layernorm.weight",
"self_attn.o_proj.weight": "attention.dense.weight",
"mlp.gate_proj.weight": "mlp.fc.weight",
"mlp.down_proj.weight": "mlp.proj.weight",
"mlp.up_proj.weight": "mlp.gate.weight",
"post_attention_layernorm.weight": "post_layernorm.weight",
}
return f"layers.{layer_id}.{per_layer_weights[weight_name]}"
# LLaMA uses nn.Linear for these following ops whose weight matrix is transposed compared to gpt2.
# In order to use the preprocess codes of gpt2, we transpose them firstly.
def transpose_weights(hf_name, param):
weight_to_transpose = ["o_proj", "gate_proj", "down_proj", "up_proj"]
if any([k in hf_name for k in weight_to_transpose]):
if len(param.shape) == 2:
param = param.transpose(0, 1)
return param
def hf_gpt_converter(args):
infer_tp = args.tensor_parallelism
saved_dir = Path(args.out_dir) / f"{infer_tp}-gpu"
saved_dir.mkdir(parents=True, exist_ok=True)
model = LlamaForCausalLM.from_pretrained(args.in_file, device_map="auto")
act_range = {}
llama_qkv_para = {}
# smoother for inputs of self_attn.o_proj and mlp.down_proj
llama_smoother = {}
if args.smoothquant is not None or args.calibrate_kv_cache:
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
"TOKENIZERS_PARALLELISM", "false")
act_range = capture_activation_range(
model,
LlamaTokenizer.from_pretrained(args.in_file, padding_side='left'))
if args.smoothquant is not None:
smooth_llama_model(model, act_range, args.smoothquant,
llama_qkv_para, llama_smoother)
args.multi_query_mode = model.config.num_attention_heads != model.config.num_key_value_heads
config = configparser.ConfigParser()
config["llama"] = {}
for key in vars(args):
config["llama"][key] = f"{vars(args)[key]}"
for k, v in vars(model.config).items():
config["llama"][k] = f"{v}"
config["llama"]["weight_data_type"] = args.storage_type
config["llama"]["multi_query_mode"] = str(args.multi_query_mode)
with open(saved_dir / "config.ini", 'w') as configfile:
config.write(configfile)
storage_type = str_to_np_dtype(args.storage_type)
global_ft_weights = [
'vocab_embedding.weight', 'ln_f.weight', 'lm_head.weight'
]
int8_outputs = None
if args.calibrate_kv_cache:
int8_outputs = "kv_cache_only"
if args.smoothquant is not None:
int8_outputs = "all"
starmap_args = []
for name, param in model.named_parameters():
if "weight" not in name and "bias" not in name:
continue
ft_name = gpt_to_ft_name(name)
if name.replace(".weight", "") in llama_smoother.keys():
smoother = llama_smoother[name.replace(".weight", "")]
smoother = smoother.detach().cpu().numpy()
starmap_args.append(
(0, saved_dir, infer_tp,
f"{ft_name}.smoother".replace(".weight", ""), smoother, None, {
"int8_outputs": int8_outputs,
"multi_query_mode": args.multi_query_mode,
"local_dim": None,
}))
param = transpose_weights(name, param)
param = param.detach().cpu().numpy().astype(storage_type)
if ft_name in global_ft_weights:
param.tofile(saved_dir / f"{ft_name}.bin")
elif ft_name.split('.')[-2] == 'query_key_value':
# Is there other ways to get local_dim? local_dim = hidden_size in llama2
local_dim = model.config.hidden_size if args.multi_query_mode else None
if args.smoothquant is None:
merge_qkv_scales(name, model, act_range, llama_qkv_para)
qkv = (0, saved_dir, infer_tp, ft_name,
llama_qkv_para.get(
name.replace(".weight", "").replace(
".q_proj",
".qkv_proj")).cpu().numpy().astype(storage_type),
act_range.get(
name.replace(".weight",
"").replace(".q_proj", ".qkv_proj")), {
"int8_outputs": int8_outputs,
"multi_query_mode":
args.multi_query_mode,
"local_dim": local_dim,
})
starmap_args.append(qkv)
elif ft_name.split('.')[-2] == 'kv':
continue
else:
starmap_args.append((0, saved_dir, infer_tp, ft_name, param,
act_range.get(name.replace(".weight", "")), {
"int8_outputs": int8_outputs,
"multi_query_mode": args.multi_query_mode,
"local_dim": None,
}))
starmap_args = tqdm(starmap_args, desc="saving weights")
if args.processes > 1:
with multiprocessing.Pool(args.processes) as pool:
pool.starmap(split_and_save_weight, starmap_args)
else:
# simpler for debug situations
for starmap_arg in starmap_args:
split_and_save_weight(*starmap_arg)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
parser = argparse.ArgumentParser(
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--out-dir',
'-o',
type=str,
help='file name of output directory',
required=True)
parser.add_argument('--in-file',
'-i',
type=str,
help='file name of input checkpoint file',
required=True)
parser.add_argument('--tensor-parallelism',
'-tp',
type=int,
help='Requested tensor parallelism for inference',
default=1)
parser.add_argument(
"--processes",
"-p",
type=int,
help="How many processes to spawn for conversion (default: 4)",
default=4)
parser.add_argument(
"--calibrate-kv-cache",
"-kv",
action="store_true",
help=
"Generate scaling factors for KV cache. Used for storing KV cache in int8."
)
parser.add_argument(
"--smoothquant",
"-sq",
type=float,
default=None,
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
" to Smoothquant the model, and output int8 weights."
" A good first try is 0.5. Must be in [0, 1]")
parser.add_argument("--storage-type",
"-t",
type=str,
default="fp32",
choices=["fp32", "fp16"])
args = parser.parse_args()
print("\n=============== Argument ===============")
for key in vars(args):
print("{}: {}".format(key, vars(args)[key]))
print("========================================")
assert (args.calibrate_kv_cache or args.smoothquant), \
"Either INT8 kv cache or SmoothQuant must be enabled for this script. Otherwise you can directly build engines from HuggingFace checkpoints, no need to do this FT-format conversion. "
hf_gpt_converter(args)