mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
233 lines
9.0 KiB
Python
233 lines
9.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import numpy as np
|
|
|
|
from .._utils import trt_dtype_to_np
|
|
from ..functional import ACT2FN
|
|
from ..module import Module
|
|
from ..quantization import QuantMode
|
|
from ..quantization.layers import FP8Linear, FP8RowLinear
|
|
from .linear import ColumnLinear, RowLinear
|
|
|
|
|
|
class MLP(Module):
|
|
|
|
def __init__(self,
|
|
hidden_size,
|
|
ffn_hidden_size,
|
|
hidden_act,
|
|
bias=True,
|
|
dtype=None,
|
|
tp_group=None,
|
|
tp_size=1,
|
|
quant_mode=QuantMode(0),
|
|
instance_id: int = 0):
|
|
super().__init__()
|
|
if hidden_act not in ACT2FN:
|
|
raise ValueError(
|
|
'unsupported activation function: {}'.format(hidden_act))
|
|
fc_output_size = 2 * ffn_hidden_size if hidden_act == 'swiglu' else ffn_hidden_size
|
|
self.use_fp8_qdq = quant_mode.has_fp8_qdq()
|
|
|
|
if self.use_fp8_qdq:
|
|
self.fc = FP8Linear(hidden_size,
|
|
fc_output_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=False)
|
|
self.proj = FP8RowLinear(ffn_hidden_size,
|
|
hidden_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
instance_id=instance_id)
|
|
else:
|
|
self.fc = ColumnLinear(hidden_size,
|
|
fc_output_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=False)
|
|
self.proj = RowLinear(ffn_hidden_size,
|
|
hidden_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
instance_id=instance_id)
|
|
self.hidden_act = hidden_act
|
|
self.dtype = dtype
|
|
|
|
def forward(self, hidden_states, workspace=None):
|
|
inter = self.fc(hidden_states)
|
|
inter = ACT2FN[self.hidden_act](inter)
|
|
output = self.proj(inter, workspace)
|
|
return output
|
|
|
|
|
|
class GatedMLP(MLP):
|
|
|
|
def __init__(self,
|
|
hidden_size,
|
|
ffn_hidden_size,
|
|
hidden_act,
|
|
bias=True,
|
|
dtype=None,
|
|
tp_group=None,
|
|
tp_size=1,
|
|
quant_mode=QuantMode(0),
|
|
instance_id: int = 0):
|
|
self.use_fp8_qdq = quant_mode.has_fp8_qdq()
|
|
super().__init__(hidden_size,
|
|
ffn_hidden_size,
|
|
hidden_act,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=quant_mode,
|
|
instance_id=instance_id)
|
|
|
|
self.hidden_size = hidden_size
|
|
self.ffn_hidden_size = ffn_hidden_size
|
|
self.hidden_act = hidden_act
|
|
self.bias = bias
|
|
self.dtype = dtype
|
|
self.tp_group = tp_group
|
|
self.tp_size = tp_size
|
|
self.quant_mode = quant_mode
|
|
self.instance_id = instance_id
|
|
|
|
if self.use_fp8_qdq:
|
|
self.gate = FP8Linear(hidden_size,
|
|
ffn_hidden_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=False)
|
|
else:
|
|
self.gate = ColumnLinear(hidden_size,
|
|
ffn_hidden_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=False)
|
|
|
|
def forward(self, hidden_states, workspace=None):
|
|
inter = self.fc(hidden_states)
|
|
inter = ACT2FN[self.hidden_act](inter)
|
|
gate = self.gate(hidden_states)
|
|
output = self.proj(inter * gate, workspace)
|
|
return output
|
|
|
|
|
|
class FusedGatedMLP(GatedMLP):
|
|
|
|
def __init__(self,
|
|
hidden_size,
|
|
ffn_hidden_size,
|
|
hidden_act,
|
|
bias=True,
|
|
dtype=None,
|
|
tp_group=None,
|
|
tp_size=1,
|
|
quant_mode=QuantMode(0),
|
|
instance_id: int = 0):
|
|
super().__init__(hidden_size,
|
|
ffn_hidden_size,
|
|
hidden_act,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=quant_mode,
|
|
instance_id=instance_id)
|
|
|
|
def forward(self, hidden_states, workspace=None):
|
|
# Combine the following pattern
|
|
#
|
|
# SiLU(FC(x)) + Gate(x)
|
|
#
|
|
# into:
|
|
#
|
|
# SwiGLU(FusedFC(x))
|
|
#
|
|
# Upside is we don't need to modify 4 different weight loading paths just to concat weights
|
|
|
|
_np_dtype = trt_dtype_to_np(self.dtype)
|
|
concat_weight = np.concatenate(
|
|
[self.gate.weight.raw_value, self.fc.weight.raw_value],
|
|
axis=0).astype(_np_dtype)
|
|
if self.bias:
|
|
concat_bias = np.concatenate(
|
|
[self.gate.bias.raw_value, self.fc.bias.raw_value],
|
|
axis=0).astype(_np_dtype)
|
|
|
|
if self.use_fp8_qdq:
|
|
gate_weights_scaling_factor = self.gate.weights_scaling_factor.raw_value
|
|
fc_weights_scaling_factor = self.fc.weights_scaling_factor.raw_value
|
|
fc_activation_scaling_factor = self.fc.activation_scaling_factor.raw_value
|
|
gate_activation_scaling_factor = self.gate.activation_scaling_factor.raw_value
|
|
assert fc_activation_scaling_factor == gate_activation_scaling_factor, "Activation scales should be identical"
|
|
|
|
# Remove dangling TRT-LLM parameter references after the graph rewrite.
|
|
for param, _ in list(self.gate.named_parameters()):
|
|
self.gate._parameters.pop(param)
|
|
self.gate = None
|
|
|
|
if self.use_fp8_qdq:
|
|
self.fc = FP8Linear(self.hidden_size,
|
|
self.ffn_hidden_size * 2,
|
|
bias=self.bias,
|
|
dtype=self.dtype,
|
|
tp_group=self.tp_group,
|
|
tp_size=self.tp_size,
|
|
gather_output=False)
|
|
else:
|
|
self.fc = ColumnLinear(self.hidden_size,
|
|
self.ffn_hidden_size * 2,
|
|
bias=self.bias,
|
|
dtype=self.dtype,
|
|
tp_group=self.tp_group,
|
|
tp_size=self.tp_size,
|
|
gather_output=False)
|
|
|
|
self.fc.weight.value = concat_weight
|
|
|
|
if self.use_fp8_qdq:
|
|
self.fc.activation_scaling_factor.value = fc_activation_scaling_factor
|
|
# TODO: need to align with quantization toolkit; preferably put a constraint to equalize
|
|
# fc/gate weight scaling factor to allow horizontal fusion without accuracy loss
|
|
self.fc.weights_scaling_factor.value = max(
|
|
gate_weights_scaling_factor, fc_weights_scaling_factor)
|
|
|
|
if self.bias:
|
|
self.fc.bias.value = concat_bias
|
|
inter = self.fc(hidden_states)
|
|
if self.hidden_act == 'silu':
|
|
inter = ACT2FN['swiglu'](inter)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Activation {self.hidden_act} not yet implemented for FusedGatedMLP"
|
|
)
|
|
output = self.proj(inter, workspace)
|
|
return output
|