TensorRT-LLMs/tensorrt_llm/_torch/modules/mlp.py
Aurelien Chartier fa95e402a5
feat: add LLmArgs option to force using dynamic quantization (#5346)
Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com>
2025-07-01 12:16:09 -07:00

99 lines
3.3 KiB
Python

from collections.abc import Callable
from typing import Optional
import torch
from torch import nn
from ..model_config import ModelConfig
from ..peft.lora.layer import LoraLayer, LoraModuleType
from .linear import Linear, TensorParallelMode, WeightMode, WeightsLoadingConfig
class MLP(nn.Module):
def __init__(self,
*,
hidden_size: int,
intermediate_size: int,
bias: bool,
activation: Callable[[torch.Tensor], torch.Tensor] = None,
dtype: Optional[torch.dtype] = None,
config: Optional[ModelConfig] = None,
layer_idx: Optional[int] = None):
super().__init__()
self.layer_idx = layer_idx
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.activation = activation
config = config or ModelConfig()
self.up_lora = LoraLayer(
[LoraModuleType.MLP_H_TO_4H],
[self.intermediate_size // config.mapping.tp_size])
self.up_proj = Linear(
self.hidden_size,
self.intermediate_size,
bias=bias,
dtype=dtype,
mapping=config.mapping,
tensor_parallel_mode=TensorParallelMode.COLUMN,
weights_loading_config=WeightsLoadingConfig(
weight_mode=WeightMode.VANILLA),
quant_config=config.get_quant_config(),
skip_create_weights_in_init=config.skip_create_weights_in_init,
lora=self.up_lora,
allreduce_strategy=config.allreduce_strategy,
force_dynamic_quantization=config.force_dynamic_quantization)
self.down_lora = LoraLayer([LoraModuleType.MLP_4H_TO_H],
[self.hidden_size])
self.down_proj = Linear(
self.intermediate_size,
self.hidden_size,
bias=bias,
dtype=dtype,
mapping=config.mapping,
tensor_parallel_mode=TensorParallelMode.ROW,
quant_config=config.get_quant_config(),
skip_create_weights_in_init=config.skip_create_weights_in_init,
lora=self.down_lora,
allreduce_strategy=config.allreduce_strategy,
force_dynamic_quantization=config.force_dynamic_quantization)
def forward(
self,
x: torch.Tensor,
lora_params: Optional[dict] = None,
) -> torch.Tensor:
if lora_params is not None:
return self.forward_lora(x, lora_params=lora_params)
x_up = self.up_proj(x)
x_act = self.activation(x_up)
x_down = self.down_proj(x_act)
return x_down
def forward_lora(
self,
x: torch.Tensor,
lora_params: Optional[dict] = None,
) -> torch.Tensor:
assert lora_params is not None
x_up = self.up_proj(x)
assert self.layer_idx is not None, "layer_idx is required for lora"
x_up_lora = self.up_lora(x, lora_params, self.layer_idx)
if x_up_lora is not None:
x_up = x_up + x_up_lora
x_act = self.activation(x_up)
x_down = self.down_proj(x_act,
lora_params=lora_params,
layer_idx=self.layer_idx)
return x_down