mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
481 lines
17 KiB
C++
481 lines
17 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION &
|
|
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "weightOnlyQuantMatmulPlugin.h"
|
|
|
|
#include <numeric>
|
|
|
|
using namespace nvinfer1;
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::kernels::cutlass_kernels;
|
|
using tensorrt_llm::plugins::WeightOnlyQuantMatmulPluginCreator;
|
|
using tensorrt_llm::plugins::WeightOnlyQuantMatmulPlugin;
|
|
using tensorrt_llm::plugins::WeightOnlyQuantGemmPluginProfiler;
|
|
using tensorrt_llm::plugins::read;
|
|
using tensorrt_llm::plugins::write;
|
|
|
|
static char const* WOQ_MATMUL_PLUGIN_VERSION{"1"};
|
|
static char const* WOQ_MATMUL_PLUGIN_NAME{"WeightOnlyQuantMatmul"};
|
|
PluginFieldCollection WeightOnlyQuantMatmulPluginCreator::mFC{};
|
|
std::vector<nvinfer1::PluginField> WeightOnlyQuantMatmulPluginCreator::mPluginAttributes;
|
|
|
|
void WeightOnlyQuantGemmPluginProfiler::runTactic(int m, int n, int k,
|
|
WeightOnlyQuantGemmPluginProfiler::Config const& tactic, char* workspace, cudaStream_t const& stream)
|
|
{
|
|
int const originalN = n * getWeightTypeMultiplier(mWeightTypeId);
|
|
half* actPtr = reinterpret_cast<half*>(workspace);
|
|
int8_t* weightPtr
|
|
= reinterpret_cast<int8_t*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(actPtr), m * k * sizeof(half)));
|
|
half* scalesPtr
|
|
= reinterpret_cast<half*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(weightPtr), n * k * sizeof(int8_t)));
|
|
half* outputPtr
|
|
= reinterpret_cast<half*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(scalesPtr), originalN * sizeof(half)));
|
|
char* workspacePtr
|
|
= reinterpret_cast<char*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(outputPtr), m * originalN * sizeof(half)));
|
|
|
|
int const wsSize = mRunner->getWorkspaceSize(m, originalN, k);
|
|
|
|
if (mWeightTypeId == WeightTypeId::INT8)
|
|
{
|
|
mRunner->gemm(actPtr, weightPtr, scalesPtr, outputPtr, m, originalN, k, tactic, workspacePtr, wsSize, stream);
|
|
}
|
|
else
|
|
{
|
|
mRunner->gemm(actPtr, reinterpret_cast<cutlass::uint4b_t*>(weightPtr), scalesPtr, outputPtr, m, originalN, k,
|
|
tactic, workspacePtr, wsSize, stream);
|
|
}
|
|
}
|
|
|
|
void WeightOnlyQuantGemmPluginProfiler::computeTmpSize(size_t maxM, size_t n, size_t k)
|
|
{
|
|
int const originalN = n * getWeightTypeMultiplier(mWeightTypeId);
|
|
std::vector<size_t> workspaces = {
|
|
maxM * k * sizeof(half), // A
|
|
n * k * sizeof(int8_t), // B
|
|
originalN * sizeof(half), // scales
|
|
maxM * originalN * sizeof(half), // C
|
|
mRunner->getWorkspaceSize(maxM, originalN, k) // workspace
|
|
};
|
|
size_t bytes = calculateTotalWorkspaceSize(workspaces.data(), workspaces.size());
|
|
setTmpWorkspaceSizeInBytes(bytes);
|
|
}
|
|
|
|
std::vector<WeightOnlyQuantGemmPluginProfiler::Config> WeightOnlyQuantGemmPluginProfiler::getTactics(
|
|
int m, int n, int k) const
|
|
{
|
|
return mRunner->getConfigs();
|
|
}
|
|
|
|
WeightOnlyQuantMatmulPlugin::WeightOnlyQuantMatmulPlugin(nvinfer1::DataType type, WeightTypeId weightTypeId,
|
|
WeightOnlyQuantMatmulPlugin::PluginProfilerPtr const& pluginProfiler)
|
|
: mPluginProfiler(pluginProfiler)
|
|
{
|
|
init(type, weightTypeId);
|
|
}
|
|
|
|
// Parameterized constructor
|
|
WeightOnlyQuantMatmulPlugin::WeightOnlyQuantMatmulPlugin(
|
|
void const* data, size_t length, WeightOnlyQuantMatmulPlugin::PluginProfilerPtr const& pluginProfiler)
|
|
: mPluginProfiler(pluginProfiler)
|
|
{
|
|
char const *d = reinterpret_cast<char const*>(data), *a = d;
|
|
nvinfer1::DataType type;
|
|
WeightTypeId weightTypeId;
|
|
read(d, type);
|
|
read(d, weightTypeId);
|
|
read(d, mDims);
|
|
|
|
init(type, weightTypeId);
|
|
|
|
mPluginProfiler->deserialize(d, mDims, mGemmId);
|
|
|
|
TLLM_CHECK_WITH_INFO(d == a + length,
|
|
"Expected length (%d) != real length (%d). This is often "
|
|
"caused by using different TensorRT-LLM version to build "
|
|
"engine and run engine.",
|
|
(int) length, (int) (d - a));
|
|
}
|
|
|
|
void WeightOnlyQuantMatmulPlugin::init(nvinfer1::DataType type, WeightTypeId weightTypeId)
|
|
{
|
|
mArch = tensorrt_llm::common::getSMVersion();
|
|
mType = type;
|
|
mWeightTypeId = weightTypeId;
|
|
|
|
if (mWeightTypeId == WeightTypeId::INT8)
|
|
{
|
|
if (mType == nvinfer1::DataType::kHALF)
|
|
{
|
|
m_weightOnlyGemmRunner = std::make_shared<
|
|
CutlassFpAIntBGemmRunner<half, uint8_t, cutlass::WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY>>();
|
|
mCudaKernelEnabled = tensorrt_llm::kernels::weight_only::is_supported(
|
|
mArch, tensorrt_llm::kernels::weight_only::KernelType::FP16Int8PerChannel);
|
|
mCudaKernelType = tensorrt_llm::kernels::weight_only::KernelType::FP16Int8PerChannel;
|
|
}
|
|
#if defined(ENABLE_BF16)
|
|
else if (mType == nvinfer1::DataType::kBF16)
|
|
{
|
|
m_weightOnlyGemmRunner = std::make_shared<
|
|
CutlassFpAIntBGemmRunner<__nv_bfloat16, uint8_t, cutlass::WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY>>();
|
|
mCudaKernelEnabled = tensorrt_llm::kernels::weight_only::is_supported(
|
|
mArch, tensorrt_llm::kernels::weight_only::KernelType::BF16Int8PerChannel);
|
|
mCudaKernelType = tensorrt_llm::kernels::weight_only::KernelType::BF16Int8PerChannel;
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
TLLM_CHECK(false);
|
|
}
|
|
}
|
|
else if (mWeightTypeId == WeightTypeId::INT4)
|
|
{
|
|
if (mType == nvinfer1::DataType::kHALF)
|
|
{
|
|
m_weightOnlyGemmRunner = std::make_shared<
|
|
CutlassFpAIntBGemmRunner<half, cutlass::uint4b_t, cutlass::WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY>>();
|
|
mCudaKernelEnabled = tensorrt_llm::kernels::weight_only::is_supported(
|
|
mArch, tensorrt_llm::kernels::weight_only::KernelType::FP16Int4PerChannel);
|
|
mCudaKernelType = tensorrt_llm::kernels::weight_only::KernelType::FP16Int4PerChannel;
|
|
}
|
|
#if defined(ENABLE_BF16)
|
|
else if (mType == nvinfer1::DataType::kBF16)
|
|
{
|
|
m_weightOnlyGemmRunner = std::make_shared<CutlassFpAIntBGemmRunner<__nv_bfloat16, cutlass::uint4b_t,
|
|
cutlass::WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY>>();
|
|
mCudaKernelEnabled = tensorrt_llm::kernels::weight_only::is_supported(
|
|
mArch, tensorrt_llm::kernels::weight_only::KernelType::BF16Int4PerChannel);
|
|
mCudaKernelType = tensorrt_llm::kernels::weight_only::KernelType::BF16Int4PerChannel;
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
TLLM_CHECK(false);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
TLLM_CHECK(false);
|
|
}
|
|
|
|
mPluginProfiler->setWeightTypeId(mWeightTypeId);
|
|
|
|
mGemmId = GemmIdCore(mDims.n, mDims.k, mType);
|
|
}
|
|
|
|
// IPluginV2DynamicExt Methods
|
|
nvinfer1::IPluginV2DynamicExt* WeightOnlyQuantMatmulPlugin::clone() const noexcept
|
|
{
|
|
auto* plugin = new WeightOnlyQuantMatmulPlugin(*this);
|
|
return plugin;
|
|
}
|
|
|
|
void WeightOnlyQuantMatmulPlugin::configGemm()
|
|
{
|
|
mPluginProfiler->profileTactics(m_weightOnlyGemmRunner, mType, mDims, mGemmId);
|
|
}
|
|
|
|
nvinfer1::DimsExprs WeightOnlyQuantMatmulPlugin::getOutputDimensions(
|
|
int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
|
|
{
|
|
// input [m1, m2, m3, ... , k]
|
|
// weight [k, n] for int8, [k, n/2] for int4
|
|
|
|
try
|
|
{
|
|
TLLM_CHECK(nbInputs == 3);
|
|
TLLM_CHECK(outputIndex == 0);
|
|
int const nbDimsA = inputs[0].nbDims;
|
|
int const nbDimsB = inputs[1].nbDims;
|
|
TLLM_CHECK(nbDimsA >= 2);
|
|
TLLM_CHECK(nbDimsB == 2);
|
|
DimsExprs ret;
|
|
ret.nbDims = nbDimsA;
|
|
for (int ii = 0; ii < nbDimsA - 1; ++ii)
|
|
{
|
|
ret.d[ii] = inputs[0].d[ii];
|
|
}
|
|
if (mWeightTypeId == WeightTypeId::INT8)
|
|
{
|
|
// int8 weight only quant
|
|
ret.d[nbDimsA - 1] = exprBuilder.constant(inputs[1].d[1]->getConstantValue());
|
|
}
|
|
else
|
|
{
|
|
// int4 weight only quant
|
|
ret.d[nbDimsA - 1] = exprBuilder.constant(inputs[1].d[1]->getConstantValue() * INT8_INT4_RATIO);
|
|
}
|
|
return ret;
|
|
}
|
|
catch (std::exception const& e)
|
|
{
|
|
caughtError(e);
|
|
}
|
|
return DimsExprs{};
|
|
}
|
|
|
|
bool WeightOnlyQuantMatmulPlugin::supportsFormatCombination(
|
|
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept
|
|
{
|
|
switch (pos)
|
|
{
|
|
case 0:
|
|
// activation
|
|
return inOut[0].type == mType && inOut[0].format == TensorFormat::kLINEAR;
|
|
case 1:
|
|
// weights
|
|
// Weights are required to be int8, but will be reinterpreted as int4 in enqueue if required
|
|
// Weights stored in checkpoint should have int8/int4 type
|
|
return inOut[1].type == nvinfer1::DataType::kINT8 && inOut[1].format == TensorFormat::kLINEAR;
|
|
case 2:
|
|
// scales channels
|
|
return inOut[2].type == mType && inOut[2].format == TensorFormat::kLINEAR;
|
|
case 3:
|
|
// out
|
|
return inOut[3].type == mType && inOut[3].format == TensorFormat::kLINEAR;
|
|
default:
|
|
// Never should be here
|
|
assert(false);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void WeightOnlyQuantMatmulPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
|
|
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
|
|
{
|
|
auto const minM = std::accumulate(in[0].min.d, in[0].min.d + in[0].min.nbDims - 1, 1, std::multiplies<int>());
|
|
auto const maxM = std::accumulate(in[0].max.d, in[0].max.d + in[0].max.nbDims - 1, 1, std::multiplies<int>());
|
|
|
|
int const maxK = in[0].max.d[in[0].max.nbDims - 1];
|
|
int const maxN = in[1].max.d[1] * getWeightTypeMultiplier(mWeightTypeId);
|
|
|
|
auto const K = maxK;
|
|
auto const N = maxN / getWeightTypeMultiplier(mWeightTypeId);
|
|
|
|
if (!mDims.isInitialized())
|
|
{
|
|
mDims = {minM, maxM, N, K};
|
|
}
|
|
|
|
mGemmId = {N, K, mType};
|
|
|
|
m_workspaceMaxSize = m_weightOnlyGemmRunner->getWorkspaceSize(maxM, maxN, maxK);
|
|
}
|
|
|
|
size_t WeightOnlyQuantMatmulPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
|
|
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept
|
|
{
|
|
return m_workspaceMaxSize;
|
|
}
|
|
|
|
int WeightOnlyQuantMatmulPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc,
|
|
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
|
|
cudaStream_t stream) noexcept
|
|
{
|
|
// inputs
|
|
// mat1 [M1, M2,..., K]
|
|
// mat2 [K, N] for int8, [K, N/2] for int4
|
|
// scale_channels [N]
|
|
// outputs
|
|
// mat [M, N]
|
|
|
|
int64_t m64 = 1;
|
|
for (int ii = 0; ii < inputDesc[0].dims.nbDims - 1; ++ii)
|
|
{
|
|
m64 *= inputDesc[0].dims.d[ii];
|
|
}
|
|
int const m = TLLM_INT32_CAST(m64);
|
|
int const n = TLLM_INT32_CAST(inputDesc[1].dims.d[1]);
|
|
int const k = TLLM_INT32_CAST(inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1]);
|
|
|
|
if (m == 0)
|
|
return 0;
|
|
|
|
bool const use_cuda_kernel = m < SMALL_M_FAST_PATH && mCudaKernelEnabled;
|
|
#if defined(ENABLE_BF16)
|
|
TLLM_CHECK_WITH_INFO(mType == nvinfer1::DataType::kHALF || mType == nvinfer1::DataType::kBF16,
|
|
"No valid weightOnlyQuantMatmul configuration");
|
|
#else
|
|
TLLM_CHECK_WITH_INFO(mType == nvinfer1::DataType::kHALF, "No valid weightOnlyQuantMatmul configuration");
|
|
#endif
|
|
int real_n = mWeightTypeId == WeightTypeId::INT4 ? n * INT8_INT4_RATIO : n;
|
|
if (use_cuda_kernel)
|
|
{
|
|
void const* cuda_kernel_act_ptr = inputs[0];
|
|
void const* cuda_kernel_weight_ptr = inputs[1];
|
|
void const* cuda_kernel_scales_ptr = inputs[2];
|
|
void* cuda_kernel_out_ptr = outputs[0];
|
|
tensorrt_llm::kernels::weight_only::Params params(cuda_kernel_act_ptr, nullptr, cuda_kernel_weight_ptr,
|
|
cuda_kernel_scales_ptr, nullptr, nullptr, cuda_kernel_out_ptr, 1.f, m, real_n, k, 0, mCudaKernelType);
|
|
tensorrt_llm::kernels::weight_only::kernel_launcher(mArch, params, stream);
|
|
}
|
|
else
|
|
{
|
|
int const ws_size = m_weightOnlyGemmRunner->getWorkspaceSize(m, real_n, k);
|
|
|
|
auto const& bestTactic = mPluginProfiler->getBestConfig(m, mGemmId);
|
|
TLLM_CHECK_WITH_INFO(bestTactic,
|
|
"No valid weight only per-channel GEMM tactic(It is usually caused by the failure to execute all candidate "
|
|
"configurations of the CUTLASS kernel, please pay attention to the warning information when building the "
|
|
"engine.)");
|
|
|
|
m_weightOnlyGemmRunner->gemm(inputs[0], inputs[1], inputs[2], outputs[0], m, real_n, k, *bestTactic,
|
|
reinterpret_cast<char*>(workspace), ws_size, stream);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// IPluginV2Ext Methods
|
|
nvinfer1::DataType WeightOnlyQuantMatmulPlugin::getOutputDataType(
|
|
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept
|
|
{
|
|
TLLM_CHECK(index == 0);
|
|
return mType;
|
|
}
|
|
|
|
// IPluginV2 Methods
|
|
|
|
char const* WeightOnlyQuantMatmulPlugin::getPluginType() const noexcept
|
|
{
|
|
return WOQ_MATMUL_PLUGIN_NAME;
|
|
}
|
|
|
|
char const* WeightOnlyQuantMatmulPlugin::getPluginVersion() const noexcept
|
|
{
|
|
return WOQ_MATMUL_PLUGIN_VERSION;
|
|
}
|
|
|
|
int WeightOnlyQuantMatmulPlugin::getNbOutputs() const noexcept
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
int WeightOnlyQuantMatmulPlugin::initialize() noexcept
|
|
{
|
|
configGemm();
|
|
return 0;
|
|
}
|
|
|
|
void WeightOnlyQuantMatmulPlugin::terminate() noexcept {}
|
|
|
|
size_t WeightOnlyQuantMatmulPlugin::getSerializationSize() const noexcept
|
|
{
|
|
return sizeof(mWeightTypeId) + // mWeightTypeId
|
|
sizeof(nvinfer1::DataType) + // mType
|
|
sizeof(mDims) + // Dimensions
|
|
mPluginProfiler->getSerializationSize(mGemmId); // selected tactics container size
|
|
}
|
|
|
|
void WeightOnlyQuantMatmulPlugin::serialize(void* buffer) const noexcept
|
|
{
|
|
char *d = static_cast<char*>(buffer), *a = d;
|
|
write(d, mType);
|
|
write(d, mWeightTypeId);
|
|
write(d, mDims);
|
|
|
|
mPluginProfiler->serialize(d, mGemmId);
|
|
assert(d == a + getSerializationSize());
|
|
}
|
|
|
|
void WeightOnlyQuantMatmulPlugin::destroy() noexcept
|
|
{
|
|
// This gets called when the network containing plugin is destroyed
|
|
delete this;
|
|
}
|
|
|
|
///////////////
|
|
|
|
WeightOnlyQuantMatmulPluginCreator::WeightOnlyQuantMatmulPluginCreator()
|
|
{
|
|
// Fill PluginFieldCollection with PluginField arguments metadata
|
|
mPluginAttributes.clear();
|
|
mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32, 1));
|
|
mPluginAttributes.emplace_back(PluginField("weight_type_id", nullptr, PluginFieldType::kINT32, 1));
|
|
mFC.nbFields = mPluginAttributes.size();
|
|
mFC.fields = mPluginAttributes.data();
|
|
}
|
|
|
|
char const* WeightOnlyQuantMatmulPluginCreator::getPluginName() const noexcept
|
|
{
|
|
return WOQ_MATMUL_PLUGIN_NAME;
|
|
}
|
|
|
|
char const* WeightOnlyQuantMatmulPluginCreator::getPluginVersion() const noexcept
|
|
{
|
|
return WOQ_MATMUL_PLUGIN_VERSION;
|
|
}
|
|
|
|
PluginFieldCollection const* WeightOnlyQuantMatmulPluginCreator::getFieldNames() noexcept
|
|
{
|
|
return &mFC;
|
|
}
|
|
|
|
IPluginV2* WeightOnlyQuantMatmulPluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept
|
|
{
|
|
PluginField const* fields = fc->fields;
|
|
nvinfer1::DataType type;
|
|
WeightTypeId weightTypeId;
|
|
// Read configurations from each fields
|
|
for (int i = 0; i < fc->nbFields; ++i)
|
|
{
|
|
char const* attrName = fields[i].name;
|
|
if (!strcmp(attrName, "weight_type_id"))
|
|
{
|
|
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
|
|
weightTypeId = static_cast<WeightTypeId>(*(static_cast<int const*>(fields[i].data)));
|
|
}
|
|
else if (!strcmp(attrName, "type_id"))
|
|
{
|
|
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
|
|
type = static_cast<nvinfer1::DataType>(*(static_cast<nvinfer1::DataType const*>(fields[i].data)));
|
|
}
|
|
}
|
|
try
|
|
{
|
|
// WeightOnlyGroupwiseQuantMatmulPluginCreator is unique and shared for an engine generation
|
|
// Create plugin profiler with shared tactics map
|
|
auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/* inference */ false);
|
|
auto* obj = new WeightOnlyQuantMatmulPlugin(type, weightTypeId, pluginProfiler);
|
|
obj->setPluginNamespace(mNamespace.c_str());
|
|
return obj;
|
|
}
|
|
catch (std::exception const& e)
|
|
{
|
|
caughtError(e);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
IPluginV2* WeightOnlyQuantMatmulPluginCreator::deserializePlugin(
|
|
char const* name, void const* serialData, size_t serialLength) noexcept
|
|
{
|
|
// This object will be deleted when the network is destroyed, which will
|
|
// call WeightOnlyQuantMatmulPlugin::destroy()
|
|
try
|
|
{
|
|
// Create plugin profiler with private tactics map which is read from the serialized engine
|
|
auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/* inference */ true);
|
|
auto* obj = new WeightOnlyQuantMatmulPlugin(serialData, serialLength, pluginProfiler);
|
|
obj->setPluginNamespace(mNamespace.c_str());
|
|
return obj;
|
|
}
|
|
catch (std::exception const& e)
|
|
{
|
|
caughtError(e);
|
|
}
|
|
return nullptr;
|
|
}
|