|
|
||
|---|---|---|
| .. | ||
| plugin_lib | ||
| build_lookup.py | ||
| README.md | ||
| run_lookup.py | ||
TRT-LLM Python Plugin
TRT-LLM provides an python plugin interface for users to integrate plugin to TRT-LLM with pure python.
openai_triton_plugin: plugin packagebuild_lookup.py: Build a TensorRT engine with TRT-LLM pluginrun_lookup.py: Run the engine and compare the result with pytorch
Plugin Definition
The following code gives a simple example to create a look up plugin. We only need to do a few things to define a TRT-LLM plugin.
- Inherit the
PluginBase - Register the plugin class to TRT-LLM by using
@trtllm_plugin("your_plugin_name") - Define
__init__function and initialize base class - Define shape & dtype inference function
- Define the compute flow
@trtllm_plugin("TritonLookUp")
class LookUpPlugin(PluginBase):
def __init__(self, use_torch_tensor, fp32_output):
super().__init__()
self.use_torch_tensor = use_torch_tensor
self.fp32_output = fp32_output
def shape_dtype_inference(self, inputs: Sequence[SymTensor]) -> SymTensor:
shape = inputs[1].shape
shape[0] = inputs[0].shape[0] + inputs[1].shape[0] - inputs[1].shape[0]
return SymTensor(
inputs[1].dtype if not self.fp32_output else torch.float32, shape)
def forward(self, inputs: Sequence[TensorWrapper],
outputs: Sequence[TensorWrapper]):
assert len(inputs) == 2
assert inputs[0].dtype in [torch.int32 or torch.int64]
assert inputs[1].dtype in [torch.float32, torch.float16, torch.bfloat16]
assert (self.fp32_output and outputs[0].dtype
== torch.float32) or outputs[0].dtype == inputs[1].dtype
x = inputs[0]
y = inputs[1]
z = outputs[0]
if self.use_torch_tensor:
x = convert_to_torch_tensor(x)
y = convert_to_torch_tensor(y)
z = convert_to_torch_tensor(z)
MAX_BLOCK_NUM = 65536
MAX_BLOCK_SIZE = 512
grid = lambda meta: (min(MAX_BLOCK_NUM, x.shape[0]) * min(
MAX_BLOCK_SIZE, y.shape[1]), )
lookup_kernel[grid](x, y, z, y.shape[0], y.shape[1], x.shape[0])
Adding a TRT-LLM Plugin to Network
You only needs to instance a plugin object and then call it with tensorrt_llm.Tensor as input arguments.
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=index_shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
y = Tensor(name='y',
shape=(vocab_size, n_embed),
dtype=torch_dtype_to_trt(dtype))
def lookup(x, y):
lookup_plugin = LookUpPlugin(False)
return lookup_plugin(x, y)
output = lookup(x, y)
output.mark_output('output', torch_dtype_to_str(dtype))
Plugin Code Structure
Since we do plugin registration when importing the custom TRT-LLM plugin, so there would be some convention on code structure for users to register the plugin at runtime.
plugin_lib
├──__init__.py
├──lookup_plugin.py
└──lookup_kernel.py
Say we have such plugin package. The __init__.py should import all the plugins in the plugin packages, so that the plugin users only need to import the plugin package to register all the plugin, and no need to manually import them.
# __init__.py
from .lookup_plugin import LookUpPlugin
__all__ = ["LookUpPlugin"]
Deserialize an Engine with TRT-LLM Plugin
During the deserialization, TRT needs to find the user defined plugin. Thus, we need to import the plugin once to register them. If the plugin has the recommended code structure, users only need to import that package to register all the custom plugin.
from tensorrt_llm.runtime.session import Session, TensorInfo
import openai_triton_plugin # isort: skip
if __name__ == "__main__":
def run_engine(dtype):
output_dir = Path('tmp') / torch_dtype_to_str(dtype)
engine_path = output_dir / "lookup.engine"
with engine_path.open('rb') as f:
session = Session.from_serialized_engine(f.read())