mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: tonylek <137782967+tonylek@users.noreply.github.com>
120 lines
4.2 KiB
Python
120 lines
4.2 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from ..functional import group_norm, layer_norm, rms_norm
|
|
from ..module import Module
|
|
from ..parameter import Parameter
|
|
|
|
|
|
class LayerNorm(Module):
|
|
|
|
def __init__(self,
|
|
normalized_shape,
|
|
eps=1e-05,
|
|
elementwise_affine=True,
|
|
bias=True,
|
|
dtype=None,
|
|
tp_size=1,
|
|
tp_dim=-1):
|
|
super().__init__()
|
|
if isinstance(normalized_shape, int):
|
|
normalized_shape = (normalized_shape, )
|
|
self.normalized_shape = tuple(normalized_shape)
|
|
self.elementwise_affine = elementwise_affine
|
|
if self.elementwise_affine:
|
|
self.weight = Parameter(shape=self.normalized_shape, dtype=dtype)
|
|
if bias:
|
|
self.bias = Parameter(shape=self.normalized_shape, dtype=dtype)
|
|
else:
|
|
self.register_parameter('bias', None)
|
|
else:
|
|
self.register_parameter('weight', None)
|
|
self.register_parameter('bias', None)
|
|
|
|
self.eps = eps
|
|
self.dtype = dtype
|
|
self.tp_size = tp_size
|
|
self.tp_dim = tp_dim
|
|
|
|
def forward(self, x, normalized_shape=None):
|
|
weight = 1. if self.weight is None else self.weight.value
|
|
bias = 0. if self.bias is None else self.bias.value
|
|
if normalized_shape is None:
|
|
normalized_shape = self.normalized_shape
|
|
return layer_norm(x, normalized_shape, weight, bias, self.eps)
|
|
|
|
|
|
class RmsNorm(Module):
|
|
|
|
def __init__(self,
|
|
normalized_shape,
|
|
num_groups=1,
|
|
eps=1e-06,
|
|
elementwise_affine=True,
|
|
dtype=None):
|
|
super().__init__()
|
|
if isinstance(normalized_shape, int):
|
|
normalized_shape = (normalized_shape, )
|
|
self.normalized_shape = tuple(normalized_shape)
|
|
self.elementwise_affine = elementwise_affine
|
|
self.num_groups = num_groups
|
|
num_channels = normalized_shape[-1]
|
|
if num_channels % num_groups != 0:
|
|
raise ValueError('num_channels must be divisible by num_groups')
|
|
if self.elementwise_affine:
|
|
self.weight = Parameter(shape=self.normalized_shape, dtype=dtype)
|
|
else:
|
|
self.register_parameter('weight', None)
|
|
|
|
self.eps = eps
|
|
self.dtype = dtype
|
|
|
|
def forward(self, x, normalized_shape=None):
|
|
weight = None if self.weight is None else self.weight.value
|
|
if normalized_shape is None:
|
|
normalized_shape = self.normalized_shape
|
|
return rms_norm(x, normalized_shape, self.num_groups, weight, self.eps)
|
|
|
|
|
|
class GroupNorm(Module):
|
|
|
|
def __init__(self,
|
|
num_groups,
|
|
num_channels,
|
|
eps=1e-05,
|
|
affine=True,
|
|
dtype=None):
|
|
super().__init__()
|
|
|
|
if num_channels % num_groups != 0:
|
|
raise ValueError('num_channels must be divisible by num_groups')
|
|
|
|
self.num_groups = num_groups
|
|
self.num_channels = num_channels
|
|
self.affine = affine
|
|
|
|
if self.affine:
|
|
self.weight = Parameter(shape=(self.num_channels, ), dtype=dtype)
|
|
self.bias = Parameter(shape=(self.num_channels, ), dtype=dtype)
|
|
else:
|
|
self.register_parameter('weight', None)
|
|
self.register_parameter('bias', None)
|
|
|
|
self.eps = eps
|
|
|
|
def forward(self, x):
|
|
weight = None if self.weight is None else self.weight.value
|
|
bias = None if self.bias is None else self.bias.value
|
|
return group_norm(x, self.num_groups, weight, bias, self.eps)
|