TensorRT-LLMs/examples/models/contrib/dit/vae_decoder_trt.py
bhsueh_NV 322ac565fc
chore: clean some ci of qa test (#3083)
* move some models to examples/models/contrib

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>

* update the document

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>

* remove arctic, blip2, cogvlm, dbrx from qa test list

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>

* remove tests of dit, mmdit and stdit from qa test

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>

* remove grok, jais, sdxl, skywork, smaug from qa test list

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>

* re-organize the glm examples

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>

* fix issues after running pre-commit

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>

* fix some typo in glm_4_9b readme

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>

* fix bug

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>

---------

Signed-off-by: bhsueh <11360707+byshiue@users.noreply.github.com>
2025-03-31 14:30:41 +08:00

137 lines
5.3 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import torch
from diffusers.models import AutoencoderKL
class TRT_Exporter(object):
def __init__(self, pytorch_model, max_batch_size, latent_channel,
latent_shape):
self.pytorch_model = pytorch_model
self.max_batch_size = max_batch_size
self.latent_channel = latent_channel
self.latent_shape = latent_shape
def export_onnx(self, onnxFile):
print(f"Start exporting ONNX model to {onnxFile}!")
latent = torch.randn(self.max_batch_size, self.latent_channel,
*self.latent_shape).cuda()
self.pytorch_model.cuda().eval()
with torch.inference_mode():
torch.onnx.export(self.pytorch_model,
latent,
onnxFile,
opset_version=17,
input_names=['input'],
output_names=['output'],
dynamic_axes={'input': {
0: 'batch'
}})
def generate_trt_engine(self, onnxFile, planFile):
print(f"Start exporting TRT model to {planFile}!")
from time import time
import tensorrt as trt
logger = trt.Logger(trt.Logger.VERBOSE)
builder = trt.Builder(logger)
network = builder.create_network(
1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
config.set_flag(trt.BuilderFlag.FP16)
parser = trt.OnnxParser(network, logger)
with open(onnxFile, 'rb') as model:
if not parser.parse(model.read(), "/".join(onnxFile.split("/"))):
print("Failed parsing %s" % onnxFile)
for error in range(parser.num_errors):
print(parser.get_error(error))
print("Succeeded parsing %s" % onnxFile)
nBS = -1
nMinBS = 1
nMaxBS = self.max_batch_size
nOptBS = (nMaxBS + nMinBS) // 2
inputT = network.get_input(0)
inputT.shape = [nBS, self.latent_channel, *self.latent_shape]
profile.set_shape(inputT.name,
[nMinBS, self.latent_channel, *self.latent_shape],
[nOptBS, self.latent_channel, *self.latent_shape],
[nMaxBS, self.latent_channel, *self.latent_shape])
config.add_optimization_profile(profile)
t0 = time()
engineString = builder.build_serialized_network(network, config)
t1 = time()
if engineString == None:
print("Failed building %s" % planFile)
else:
print("Succeeded building %s in %d s" % (planFile, t1 - t0))
print("plan file is", planFile)
with open(planFile, 'wb') as f:
f.write(engineString)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--vae",
type=str,
choices=["ema", "mse"],
default="mse")
parser.add_argument('--max_batch_size', type=int, default=8)
parser.add_argument("--image-size",
type=int,
choices=[256, 512],
default=512)
parser.add_argument('--onnxFile',
type=str,
default='vae_decoder/onnx/visual_encoder.onnx',
help='')
parser.add_argument('--planFile',
type=str,
default='vae_decoder/plan/visual_encoder_fp16.plan',
help='')
parser.add_argument('--only_trt',
action='store_true',
help='Run only convert the onnx to TRT engine.')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_arguments()
onnx_file_dir = os.path.dirname(args.onnxFile)
if not onnx_file_dir == '' and not os.path.exists(onnx_file_dir):
os.makedirs(onnx_file_dir)
plan_file_dir = os.path.dirname(args.planFile)
if not os.path.exists(plan_file_dir):
os.makedirs(plan_file_dir)
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}")
vae.forward = vae.decode
latant_shape = [args.image_size // 8] * 2
onnx_trt_obj = TRT_Exporter(vae, args.max_batch_size, 4, latant_shape)
if args.only_trt:
onnx_trt_obj.generate_trt_engine(args.onnxFile, args.planFile)
else:
onnx_trt_obj.export_onnx(args.onnxFile)
onnx_trt_obj.generate_trt_engine(args.onnxFile, args.planFile)