TensorRT-LLMs/cpp/tensorrt_llm/layers/dynamicDecodeLayer.h
Kaiyu Xie f430a4b447
Update TensorRT-LLM (#1688)
* Update TensorRT-LLM

---------

Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com>
Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com>
Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com>
Co-authored-by: CoderHam <hemant@cohere.com>
Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
2024-05-28 20:07:49 +08:00

114 lines
3.8 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/tensor.h"
#include "tensorrt_llm/executor/types.h"
#include "tensorrt_llm/layers/banWordsLayer.h"
#include "tensorrt_llm/layers/baseLayer.h"
#include "tensorrt_llm/layers/beamSearchLayer.h"
#include "tensorrt_llm/layers/decodingLayer.h"
#include "tensorrt_llm/layers/layerUtils.h"
#include "tensorrt_llm/layers/medusaDecodingLayer.h"
#include "tensorrt_llm/layers/penaltyLayer.h"
#include "tensorrt_llm/layers/samplingLayer.h"
#include "tensorrt_llm/layers/stopCriteriaLayer.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include <optional>
#include <string>
#include <unordered_map>
#include <utility>
namespace tc = tensorrt_llm::common;
namespace tensorrt_llm
{
namespace kernels
{
struct BeamHypotheses;
}
namespace layers
{
template <typename T>
class DynamicDecodeLayer : public BaseLayer
{
using Base = BaseLayer;
public:
DynamicDecodeLayer(executor::DecodingMode const& mode, DecoderDomain const& decodingDomain, cudaStream_t stream,
std::shared_ptr<tc::IAllocator> allocator);
~DynamicDecodeLayer() override;
void setup(runtime::SizeType32 batchSize, runtime::SizeType32 beamWidth, runtime::SizeType32 const* batchSlots,
std::shared_ptr<BaseSetupParams> setupParams) override;
void forwardAsync(std::shared_ptr<BaseOutputParams> outputs, std::shared_ptr<BaseInputParams> inputs) override;
void forwardSync(std::shared_ptr<BaseOutputParams> outputs, std::shared_ptr<BaseInputParams> inputs) override;
// Function is only used by test.
// It is guaranteed by LayersFactory that the first layer is the Penalty layer.
T* getRuntimeLogitsDevice()
{
return dynamic_cast<PenaltyLayer<T>*>(mLayers[0].get())->getRuntimeLogitsDevice();
}
private:
void allocateBuffer();
void freeBuffer();
void initialize();
void initializeLayers();
void prepareIdsPtrs(std::shared_ptr<DynamicDecodeOutputParams> const& outputs,
runtime::SizeType32 const* batchSlots, runtime::SizeType32 batchSize, runtime::SizeType32 beamWidth,
runtime::SizeType32 maxSeqLen);
static void prepareOutputData(std::shared_ptr<DynamicDecodeOutputParams> const& outputs,
std::shared_ptr<DynamicDecodeInputParams> const& params, runtime::ITensor::SharedPtr const& idsPtrsHost,
runtime::SizeType32 const* batchSlots, runtime::SizeType32 batchSize, runtime::SizeType32 maxBatchSize,
runtime::SizeType32 beamWidth, runtime::SizeType32 maxSeqLen, runtime::SizeType32 maxTokensPerStep,
runtime::SizeType32 cyclicStep, bool outputLogProbs, cudaStream_t stream);
private:
using Base::mAllocator;
using Base::mStream;
using Base::mDecoderDomain;
std::vector<std::unique_ptr<BaseLayer>> mLayers;
executor::DecodingMode mDecodingMode;
runtime::TokenIdType* mZeroParentIdsDevice{nullptr};
runtime::ITensor::SharedPtr mIdsPtrHost;
bool mHasDiffRuntimeArgs{false};
bool mOutputLogProbs{false};
runtime::SizeType32 mCyclicStep{0};
runtime::SizeType32 mRuntimeMaxSeqLen{0};
runtime::SizeType32 mConfiguredBeamWidth{-1};
};
} // namespace layers
} // namespace tensorrt_llm