mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com> Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com> Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com> Co-authored-by: CoderHam <hemant@cohere.com> Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
219 lines
8.2 KiB
C++
219 lines
8.2 KiB
C++
/*
|
|
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/layers/samplingLayer.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
|
|
|
|
#include <algorithm>
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::kernels;
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace layers
|
|
{
|
|
template <typename T>
|
|
SamplingLayer<T>::SamplingLayer(executor::DecodingMode const& mode, DecoderDomain const& decoderDomain,
|
|
cudaStream_t stream, std::shared_ptr<IAllocator> allocator)
|
|
: BaseLayer(decoderDomain, stream, std::move(allocator))
|
|
, mDecodingMode(mode)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
TLLM_CHECK_WITH_INFO(!mDecodingMode.isBeamSearch(), "SamplingLayer does not support Beam search mode");
|
|
TLLM_CHECK_WITH_INFO(mDecodingMode.isTopKorTopP(), "SamplingLayer requires TopK nor TopP mode");
|
|
if (mDecodingMode.isTopK())
|
|
{
|
|
mSamplingLayers.emplace_back(std::make_unique<TopKSamplingLayer<T>>(decoderDomain, mStream, mAllocator));
|
|
}
|
|
|
|
if (mDecodingMode.isTopP())
|
|
{
|
|
mSamplingLayers.emplace_back(
|
|
std::make_unique<TopPSamplingLayer<T>>(decoderDomain, mStream, mAllocator, /* deterministic */ true));
|
|
}
|
|
|
|
allocateBuffer(decoderDomain.getBatchSize());
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void SamplingLayer<T>::allocateBuffer(SizeType32 batchSize)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
mWorkspaceSize = 0;
|
|
for (auto&& layer : mSamplingLayers)
|
|
{
|
|
mWorkspaceSize = std::max(mWorkspaceSize, layer->getWorkspaceSize());
|
|
}
|
|
|
|
std::array<size_t, 4> deviceBufferSizes;
|
|
deviceBufferSizes[0] = sizeof(curandState_t) * batchSize;
|
|
deviceBufferSizes[1] = sizeof(uint64_t) * batchSize;
|
|
deviceBufferSizes[2] = sizeof(bool) * batchSize;
|
|
deviceBufferSizes[3] = mWorkspaceSize;
|
|
|
|
mCurandStatesDevice = mAllocator->reMalloc(mCurandStatesDevice, deviceBufferSizes[0], false);
|
|
mRandomSeedsDevice = mAllocator->reMalloc(mRandomSeedsDevice, deviceBufferSizes[1], false);
|
|
mSkipDecodeDevice = mAllocator->reMalloc(mSkipDecodeDevice, deviceBufferSizes[2], false);
|
|
mSamplingWorkspaceDevice = mAllocator->reMalloc(mSamplingWorkspaceDevice, deviceBufferSizes[3], false);
|
|
|
|
auto const bytesAllocated = std::accumulate(deviceBufferSizes.begin(), deviceBufferSizes.end(), size_t{0});
|
|
TLLM_LOG_DEBUG("SamplingLayer allocated %d bytes on GPU", bytesAllocated);
|
|
|
|
mAllocatedSize = bytesAllocated;
|
|
for (auto&& layer : mSamplingLayers)
|
|
{
|
|
mAllocatedSize += layer->getAllocatedSize();
|
|
}
|
|
|
|
// host buffers.
|
|
mSkipDecodeHost = (bool*) std::realloc(mSkipDecodeHost, sizeof(bool) * batchSize);
|
|
TLLM_CHECK(mSkipDecodeHost != nullptr);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void SamplingLayer<T>::freeBuffer()
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
mAllocator->free((void**) (&mCurandStatesDevice));
|
|
mAllocator->free((void**) (&mRandomSeedsDevice));
|
|
mAllocator->free((void**) (&mSkipDecodeDevice));
|
|
mAllocator->free((void**) (&mSamplingWorkspaceDevice));
|
|
std::free(mSkipDecodeHost);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void SamplingLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 const* batchSlots,
|
|
std::shared_ptr<BaseSetupParams> baseSetupParams)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto setupParams = std::dynamic_pointer_cast<SamplingSetupParams>(baseSetupParams);
|
|
|
|
// If runtime argument has single random seed, using this random seed to
|
|
// initialize the random table of all sentences. If the argument has
|
|
// [batchSize] random seeds, initializing the random table by different
|
|
// random seeds respectively. If no random seed, initialize the random table
|
|
// of all sentences by 0 directly.
|
|
if (setupParams->randomSeed)
|
|
{
|
|
if (setupParams->randomSeed->size() == 1)
|
|
{
|
|
invokeCurandInitialize(
|
|
mCurandStatesDevice, batchSlots, batchSize, setupParams->randomSeed->front(), mStream);
|
|
sync_check_cuda_error();
|
|
}
|
|
else
|
|
{
|
|
TLLM_CHECK_WITH_INFO(setupParams->randomSeed->size() == batchSize, "Random seed vector size mismatch.");
|
|
cudaAutoCpy(mRandomSeedsDevice, setupParams->randomSeed->data(), batchSize, mStream);
|
|
invokeCurandBatchInitialize(mCurandStatesDevice, batchSlots, batchSize, mRandomSeedsDevice, mStream);
|
|
sync_check_cuda_error();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Initialize curand states using the default seed 0.
|
|
invokeCurandInitialize(mCurandStatesDevice, batchSlots, batchSize, 0, mStream);
|
|
}
|
|
|
|
if (setupParams->outputLogProbs)
|
|
{
|
|
// FIXME(nkorobov): monotonically growing
|
|
mOutputLogProbs = std::any_of(setupParams->outputLogProbs->begin(), setupParams->outputLogProbs->end(),
|
|
[this](bool outputLogProbs) { return this->mOutputLogProbs | outputLogProbs; });
|
|
}
|
|
|
|
if (setupParams->cumLogProbs)
|
|
{
|
|
// FIXME(nkorobov): monotonically growing
|
|
mCumLogProbs = std::any_of(setupParams->cumLogProbs->begin(), setupParams->cumLogProbs->end(),
|
|
[this](bool cumLogProbs) { return this->mCumLogProbs | cumLogProbs; });
|
|
}
|
|
|
|
for (auto&& layer : mSamplingLayers)
|
|
{
|
|
layer->setup(batchSize, beamWidth, batchSlots, setupParams);
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void SamplingLayer<T>::forwardAsync(
|
|
std::shared_ptr<BaseOutputParams> baseOutputs, std::shared_ptr<BaseInputParams> baseInputs)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto inputs = std::dynamic_pointer_cast<SamplingInputParams>(baseInputs);
|
|
auto outputs = std::dynamic_pointer_cast<SamplingOutputParams>(baseOutputs);
|
|
|
|
auto const batchSize = inputs->logits.shape[0];
|
|
|
|
auto logits = inputs->logits.template getPtr<T>();
|
|
auto endIds = inputs->end_ids.template getPtr<int const>();
|
|
auto batchSlots = inputs->batch_slots ? inputs->batch_slots->template getPtr<int const>() : nullptr;
|
|
float* cumLogProbs = (outputs->cum_log_probs) ? outputs->cum_log_probs->template getPtr<float>() : nullptr;
|
|
float* outputLogProbs = (outputs->output_log_probs) ? outputs->output_log_probs->template getPtr<float>() : nullptr;
|
|
|
|
FinishedState* finishedInput = (inputs->finished)
|
|
? reinterpret_cast<FinishedState*>(inputs->finished->template getPtr<FinishedState::UnderlyingType>())
|
|
: nullptr;
|
|
|
|
auto const skipTopP = !mDecodingMode.isTopP();
|
|
|
|
// Compute probabilities either for TopP or if cumLogProbs or outputLogProbs are specified
|
|
bool const skipSoftMax = skipTopP && !mOutputLogProbs && !mCumLogProbs;
|
|
|
|
inputs->curand_states = mCurandStatesDevice;
|
|
inputs->sampling_workspace = mSamplingWorkspaceDevice;
|
|
inputs->probs_computed = !skipSoftMax;
|
|
if (!skipSoftMax)
|
|
{
|
|
invokeAddBiasSoftMax(logits, (T**) nullptr, logits, (T*) (nullptr), endIds, finishedInput, batchSlots,
|
|
batchSize, mDecoderDomain.getBatchSize(), /* bw */ 1, mDecoderDomain.getVocabSize(),
|
|
mDecoderDomain.getVocabSizePadded(), skipSoftMax, /* batchSlotLogits */ false, mStream);
|
|
sync_check_cuda_error();
|
|
}
|
|
|
|
for (auto&& layer : mSamplingLayers)
|
|
{
|
|
layer->forwardAsync(baseOutputs, baseInputs);
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template class SamplingLayer<float>;
|
|
template class SamplingLayer<half>;
|
|
|
|
} // namespace layers
|
|
} // namespace tensorrt_llm
|