TensorRT-LLMs/cpp/tensorrt_llm/runtime/worldConfig.cpp
Kaiyu Xie f430a4b447
Update TensorRT-LLM (#1688)
* Update TensorRT-LLM

---------

Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com>
Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com>
Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com>
Co-authored-by: CoderHam <hemant@cohere.com>
Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
2024-05-28 20:07:49 +08:00

135 lines
4.6 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/worldConfig.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/mpiUtils.h"
#include "tensorrt_llm/common/stringUtils.h"
#include <algorithm>
#include <numeric>
#include <set>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
WorldConfig::WorldConfig(SizeType32 tensorParallelism, SizeType32 pipelineParallelism, SizeType32 rank,
SizeType32 gpusPerNode, std::optional<std::vector<SizeType32>> const& deviceIds)
: mTensorParallelism{tensorParallelism}
, mPipelineParallelism{pipelineParallelism}
, mRank{rank}
, mGpusPerNode{gpusPerNode}
, mDeviceIds{deviceIds.value_or(std::vector<SizeType32>(mGpusPerNode))}
{
#if ENABLE_MULTI_DEVICE
auto const numDevices = mDeviceIds.size();
TLLM_CHECK(numDevices > 0);
if (!deviceIds.has_value())
{
mDeviceIds.resize(mGpusPerNode);
std::iota(mDeviceIds.begin(), mDeviceIds.end(), 0);
}
else
{
// total number is at most mGpusPerNode
TLLM_CHECK_WITH_INFO(static_cast<SizeType32>(numDevices) <= mGpusPerNode,
"Number of device IDs %zu is greater than GPUs per node %d", numDevices, mGpusPerNode);
// all deviceIds is within the range
TLLM_CHECK(*std::max_element(mDeviceIds.begin(), mDeviceIds.end()) < mGpusPerNode);
TLLM_CHECK(*std::min_element(mDeviceIds.begin(), mDeviceIds.end()) >= 0);
// all ids are unique
std::set<SizeType32> const deviceIdSet(mDeviceIds.begin(), mDeviceIds.end());
TLLM_CHECK_WITH_INFO(
deviceIdSet.size() == numDevices, "Device IDs are not unique %zu != %zu", deviceIdSet.size(), numDevices);
// log a warning if device ids are not contiguous
if (std::adjacent_find(deviceIdSet.begin(), deviceIdSet.end(), [](auto x, auto y) { return y - x != 1; })
!= deviceIdSet.end())
{
TLLM_LOG_WARNING("The user specified device IDs are not contiguous!");
}
TLLM_LOG_INFO("Using user-specified devices: %s", tc::arr2str(mDeviceIds.data(), numDevices).c_str());
}
TLLM_CHECK(mTensorParallelism > 0);
TLLM_CHECK(mPipelineParallelism > 0);
#else
// Overriding to default - single GPU
mRank = 0;
mGpusPerNode = 1;
mTensorParallelism = 1;
mPipelineParallelism = 1;
#endif
}
bool WorldConfig::validMpiConfig() const
{
return COMM_SESSION.getSize() == getSize();
}
WorldConfig WorldConfig::mpi(SizeType32 gpusPerNode, std::optional<SizeType32> tensorParallelism,
std::optional<SizeType32> pipelineParallelism, std::optional<std::vector<SizeType32>> const& deviceIds)
{
#if ENABLE_MULTI_DEVICE
auto& comm = COMM_SESSION;
auto const mpiSize = comm.getSize();
auto const mpiRank = comm.getRank();
TLLM_LOG_INFO("MPI size: %d, rank: %d", mpiSize, mpiRank);
auto const pp = pipelineParallelism.value_or(1);
auto const tp = tensorParallelism.value_or(mpiSize / pp);
TLLM_LOG_DEBUG("TP: %d, PP: %d", tp, pp);
TLLM_CHECK(mpiSize == tp * pp);
TLLM_CHECK(mpiSize <= gpusPerNode || LOCAL_COMM_SESSION.getSize() == gpusPerNode);
return WorldConfig{tp, pp, mpiRank, gpusPerNode, deviceIds};
#else
return WorldConfig();
#endif
}
std::vector<SizeType32> WorldConfig::getPipelineParallelGroup() const
{
auto const pp = getPipelineParallelism();
auto const tp = getTensorParallelism();
auto const worldSize = getSize();
std::vector<SizeType32> group;
group.reserve(pp);
for (SizeType32 idx = getTensorParallelRank(); idx < worldSize; idx += tp)
{
group.push_back(idx);
}
return group;
}
std::vector<SizeType32> WorldConfig::getTensorParallelGroup() const
{
auto const tp = getTensorParallelism();
auto const rank = getRank();
auto const tpRank = getTensorParallelRank();
std::vector<SizeType32> group;
group.reserve(tp);
for (SizeType32 idx = 0; idx < tp; idx++)
{
group.push_back(rank - tpRank + idx);
}
return group;
}