TensorRT-LLMs/tensorrt_llm/executor.py
Kaiyu Xie f430a4b447
Update TensorRT-LLM (#1688)
* Update TensorRT-LLM

---------

Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com>
Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com>
Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com>
Co-authored-by: CoderHam <hemant@cohere.com>
Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
2024-05-28 20:07:49 +08:00

772 lines
28 KiB
Python

import asyncio
import datetime
import secrets
from abc import ABC, abstractmethod
from multiprocessing.connection import Client, Listener
from pathlib import Path
from queue import Queue
from threading import Thread
from typing import Any, Dict, Generator, List, Optional, Tuple, Union
import numpy as np
import torch
from janus import Queue as AsyncQueue
from tensorrt_llm._utils import mpi_rank, mpi_world_size
from tensorrt_llm.hlapi.mpi_session import (MpiPoolSession, MpiSession,
external_mpi_comm_available,
find_free_port,
need_spawn_mpi_workers)
from tensorrt_llm.hlapi.tokenizer import TokenizerBase, tokenizer_factory
from tensorrt_llm.hlapi.utils import (ContextManager, GenerationOutput,
OutputConfig, SamplingConfig,
print_traceback_on_error)
from . import bindings as tllm
from ._utils import mpi_rank, mpi_world_size
from .bindings import executor as tllme
from .hlapi.mpi_session import (MpiPoolSession, MpiSession,
external_mpi_comm_available, find_free_port,
need_spawn_mpi_workers)
from .hlapi.tokenizer import TokenizerBase, tokenizer_factory
from .hlapi.utils import (ContextManager, GenerationOutput, SamplingConfig,
print_traceback_on_error)
def has_event_loop() -> bool:
try:
asyncio.get_running_loop()
except RuntimeError:
return False
return True
class GenerationRequest:
def __init__(
self,
ids_or_prompt: Union[torch.Tensor, np.ndarray, list, str],
streaming: bool = True,
tokenizer: Optional[TokenizerBase] = None,
sampling_config: Optional[SamplingConfig] = None,
output_config: Optional[tllme.OutputConfig] = None,
bad_words: Optional[List[List[int]]] = None,
stop_words: Optional[List[List[int]]] = None,
):
if isinstance(ids_or_prompt, str):
assert tokenizer is not None, "GenerationRequest constructor with str prompt requires a tokenizer argument"
self.input_ids = (tokenizer.encode(ids_or_prompt,
return_tensors="pt",
return_attention_mask=False).to(
torch.int32).numpy())
else:
if isinstance(ids_or_prompt, list):
self.input_ids = np.array(ids_or_prompt, dtype="int32")
elif isinstance(ids_or_prompt, torch.Tensor):
self.input_ids = ids_or_prompt.to(torch.int32).numpy()
elif isinstance(ids_or_prompt, np.ndarray):
self.input_ids = ids_or_prompt
else:
raise ValueError(
f"ids_or_prompt (={ids_or_prompt}) should be an instance of str, torch.Tensor, np.ndarray or list"
)
self.tokenizer = tokenizer
self.streaming = streaming
self.sampling_config = sampling_config or SamplingConfig()
self.output_config = output_config or OutputConfig()
self.stop_words = stop_words if stop_words is not None else []
self.bad_words = bad_words if bad_words is not None else []
self.id = -1
def set_id(self, id):
self.id = id
return self
def as_executor_request(self) -> tllme.Request:
# Request
end_id = self.tokenizer.eos_token_id if self.tokenizer is not None else None
pad_id = self.tokenizer.pad_token_id if self.tokenizer is not None else None
if end_id is None:
end_id = self.sampling_config.end_id
pad_id = end_id if pad_id is None else pad_id
request_kwargs = {
"input_token_ids": self.input_ids.squeeze().tolist(),
"max_new_tokens": self.sampling_config.max_new_tokens or 32,
"streaming": self.streaming,
"sampling_config": self.sampling_config,
"end_id": end_id,
"pad_id": pad_id,
"output_config": self.output_config,
# The following options in the Executor API are not yet exposed by the HLAPI:
# https://jirasw.nvidia.com/browse/TRTLLM-489
"bad_words": self.bad_words,
"stop_words": self.stop_words,
"embedding_bias": None, #TODO
"external_draft_tokens_config": None, #TODO
"prompt_tuning_config": None, #TODO
"lora_config": None, #TODO
"logits_post_processor_name": None, #TODO
}
request = tllme.Request(**request_kwargs)
return request
class GenerationResult(GenerationOutput):
def __init__(self,
generation_request: GenerationRequest,
tokenizer: Optional[TokenizerBase] = None) -> None:
self._done = False
self._cancelled = False
self.generation_request = generation_request
self.tokenizer = tokenizer
self.streaming = generation_request.streaming
if has_event_loop():
aqueue = AsyncQueue()
self.queue = aqueue.sync_q
self.aqueue = aqueue.async_q
else:
self.queue = Queue()
self.aqueue = None
beam_width = generation_request.sampling_config.beam_width
self.beam_search_enabled = beam_width > 1
self._token_ids = [[] for _ in range(beam_width)]
self.logprobs = []
self.last_text = ""
@property
def token_ids(self):
if not self.beam_search_enabled:
return self._token_ids[0]
return self._token_ids
def handle_generation_msg(self, tensors: tuple, error: str):
if error:
raise RuntimeError(error)
output_token_ids, context_logits, generation_logits, log_probs = tensors
for idx, beam_ids in enumerate(output_token_ids):
self._token_ids[idx] += beam_ids
self.context_logits = context_logits
self.generation_logits = generation_logits
self.log_probs = log_probs
def result_step(self, timeout: Optional[float] = None):
_, tensors, self._done, error = self.queue.get(timeout=timeout)
self.handle_generation_msg(tensors, error)
async def aresult_step(self):
assert self.aqueue is not None
_, tensors, self._done, error = await self.aqueue.get()
self.handle_generation_msg(tensors, error)
@property
def text_diff(self) -> str:
assert self.streaming is not None
assert not self.beam_search_enabled, "text_diff is not supported with beam_search"
new_txt = self.text
diff = new_txt[len(self.last_text):]
self.last_text = new_txt
return diff
@property
def text(self) -> Union[str, List[str]]:
if self.tokenizer is None:
return ''
texts = self.tokenizer.batch_decode(self._token_ids)
if not self.beam_search_enabled:
return texts[0]
return texts
def result(self, timeout: Optional[float] = None) -> "GenerationResult":
while not self._done:
self.result_step(timeout)
return self
async def aresult(self) -> "GenerationResult":
while not self._done:
await self.aresult_step()
return self
def __iter__(self):
return self
def __next__(self):
if self._done:
raise StopIteration
self.result_step()
return self
def __aiter__(self):
return self
async def __anext__(self):
if self._done:
raise StopAsyncIteration
await self.aresult_step()
return self
def running(self) -> bool:
return not self._done
def cancelled(self) -> bool:
return self._cancelled
def cancel(self):
raise NotImplementedError
def done(self) -> bool:
return self._done
def exception(self, timeout: Optional[float] = None):
try:
self.result(timeout)
except RuntimeError as e:
return e
class GenerationExecutor(ABC):
TERMINATE_REQUEST_ID = 0
def __init__(self):
self.id_counter = GenerationExecutor.TERMINATE_REQUEST_ID + 1
self.tokenizer = None
def generate_id(self) -> int:
gen_id = self.id_counter
# underlying C type is uint64
uint64_max = 2**64 - 1
self.id_counter = (self.id_counter + 1) % uint64_max
if self.id_counter == GenerationExecutor.TERMINATE_REQUEST_ID:
self.id_counter += 1
return gen_id
@abstractmethod
def submit(self, request: GenerationRequest) -> GenerationResult:
pass
def generate_async(
self,
prompt: Union[str, List[int], List[str], List[List[int]]],
streaming: bool,
sampling_config: Union[SamplingConfig, List[SamplingConfig]],
output_config: Optional[tllme.OutputConfig] = None,
bad_words: Optional[List[List[int]]] = None,
stop_words: Optional[List[List[int]]] = None,
) -> Union[GenerationResult, List[GenerationResult]]:
unbatched = isinstance(prompt, str) or (isinstance(prompt, list)
and isinstance(prompt[0], int))
string_input = isinstance(
prompt, str) or (not unbatched and isinstance(prompt[0], str))
tokenizer = self.tokenizer if string_input else None
stop_words = stop_words if stop_words is not None else []
bad_words = bad_words if bad_words is not None else []
if unbatched:
results = self.submit(
GenerationRequest(prompt,
streaming,
tokenizer,
sampling_config=sampling_config,
output_config=output_config,
stop_words=stop_words,
bad_words=bad_words))
else:
sampling_config = [sampling_config] * len(prompt) if not isinstance(
sampling_config, list) else sampling_config
results = []
for idx, p in enumerate(prompt):
results.append(
self.submit(
GenerationRequest(p,
streaming,
tokenizer,
sampling_config=sampling_config[idx],
output_config=output_config,
stop_words=stop_words,
bad_words=bad_words)))
return results
def generate(
self,
prompt: Union[str, List[int], List[str], List[List[int]]],
streaming: bool = False,
sampling_config: Optional[Union[SamplingConfig,
List[SamplingConfig]]] = None,
output_config: Optional[tllme.OutputConfig] = None,
bad_words: Optional[List[List[int]]] = None,
stop_words: Optional[List[List[int]]] = None,
) -> Union[GenerationResult, List[GenerationResult]]:
futures = self.generate_async(prompt,
streaming=streaming,
sampling_config=sampling_config,
output_config=output_config,
bad_words=bad_words,
stop_words=stop_words)
if isinstance(futures, GenerationRequest):
futures.result()
else:
for future in futures:
future.result()
return futures
@abstractmethod
def shutdown(self):
pass
@abstractmethod
def get_stats(self):
pass
@abstractmethod
async def aget_stats(self):
pass
@staticmethod
def create(
engine_dir: Path,
tokenizer: Union[str, Path, TokenizerBase],
max_beam_width: int = 1,
executor_type: tllm.TrtGptModelType = tllm.TrtGptModelType.
InflightFusedBatching,
scheduler_config: tllme.SchedulerConfig = tllme.SchedulerConfig(
tllme.CapacitySchedulerPolicy.GUARANTEED_NO_EVICT),
executor_config: tllm.TrtGptModelOptionalParams = tllm.
TrtGptModelOptionalParams(),
model_world_size: int = 1,
world_size: int = 0,
mpi_session: Optional[MpiSession] = None,
reuse_mpi_comm: bool = False,
) -> Union["ExecutorBindingsProxy", "ExecutorBindingsWorker"]:
if world_size == 0:
world_size = mpi_world_size()
if world_size > 1 and world_size < model_world_size:
raise RuntimeError(
"Cannot instantiate Generator for engine built "
f"for {model_world_size} ranks, while currently running "
f"on {world_size} ranks.")
worker_kwargs = {
"engine_dir": engine_dir,
"tokenizer": tokenizer,
"max_beam_width": max_beam_width,
"executor_type": executor_type,
"scheduler_config": scheduler_config,
"executor_config": executor_config,
}
# The case where the Python main process is launched by mpirun
mpirun_launch = external_mpi_comm_available(model_world_size)
# The case where the Python main process utilizes mpi4py to spawn MPI workers
spawn_workers = need_spawn_mpi_workers(model_world_size)
if spawn_workers or (mpirun_launch and reuse_mpi_comm):
if reuse_mpi_comm:
assert mpi_session is not None, "reuse_mpi_comm requires an external MPI session"
return ExecutorBindingsProxy(worker_kwargs,
model_world_size=model_world_size,
mpi_session=mpi_session)
return ExecutorBindingsWorker(**worker_kwargs)
class ExecutorBindingsWorker(GenerationExecutor):
class WorkerExit(GeneratorExit):
pass
def __init__(
self,
engine_dir: Path,
tokenizer: Union[str, Path, TokenizerBase, None],
max_beam_width: int = 1,
executor_type: tllm.TrtGptModelType = tllm.TrtGptModelType.
InflightFusedBatching,
scheduler_config: tllme.SchedulerConfig = tllme.SchedulerConfig(
tllme.CapacitySchedulerPolicy.GUARANTEED_NO_EVICT),
executor_config: tllm.TrtGptModelOptionalParams = tllm.
TrtGptModelOptionalParams(),
) -> None:
super().__init__()
self.engine = None
self.tokenizer = tokenizer_factory(tokenizer)
self._stats = None
self._results: Dict[int, GenerationResult] = {}
self._pending: set = set()
self.result_queue = None
self.rank = mpi_rank()
# Convert config to Executor config.
config = tllme.ExecutorConfig(
max_beam_width,
batching_type=self.convert_executor_type(executor_type),
scheduler_config=scheduler_config)
# Translate additional options from TrtGptModelOptionalParams
config.kv_cache_config = tllme.KvCacheConfig(
enable_block_reuse=executor_config.kv_cache_config.
enable_block_reuse,
max_tokens=executor_config.kv_cache_config.max_tokens,
max_attention_window=executor_config.kv_cache_config.
max_attention_window,
sink_token_length=executor_config.kv_cache_config.sink_token_length,
free_gpu_memory_fraction=executor_config.kv_cache_config.
free_gpu_memory_fraction)
if executor_config.device_ids:
config.parallel_config = tllme.ParallelConfig(
device_ids=executor_config.device_ids)
config.enable_chunked_context = executor_config.enable_chunked_context
config.normalize_log_probs = executor_config.normalize_log_probs
config.decoding_config = executor_config.decoding_config
assert not executor_config.enable_trt_overlap, "enable_trt_overlap is not supported."
self.engine = tllme.Executor(engine_dir,
tllme.ModelType.DECODER_ONLY,
executor_config=config)
self.awaiter_thread = Thread(target=self.awaiter_loop)
self.running = True
def convert_executor_type(self, executor_type):
batching_type_map = {
tllm.TrtGptModelType.V1: tllme.BatchingType.STATIC,
tllm.TrtGptModelType.InflightFusedBatching:
tllme.BatchingType.INFLIGHT,
}
assert executor_type in batching_type_map, f"executor_type={executor_type} is not supported."
return batching_type_map[executor_type]
def create_stats_queue(self):
# Stats queue is created during first submission to ensure event loop exists if it is needed.
if not self._stats:
if has_event_loop():
self._stats = AsyncQueue()
self.stats_queue = self._stats.sync_q
self.stats_aqueue = self._stats.async_q
else:
self._stats = Queue()
self.stats_queue = self._stats
self.stats_aqueue = None
def set_result_queue(self, queue):
self.result_queue = queue
def return_queue(self, req_id: int):
""" If a centralized result queue is registered (used for communication with the proxy)
send the message there.
Otherwise, push the result directly in the GenerationResult queue.
"""
if self.result_queue is not None:
return self.result_queue
return self._results[req_id].queue
def start_awaiter_thread(self):
if self.engine.can_enqueue_requests(
) and not self.awaiter_thread.is_alive():
self.awaiter_thread.start()
def awaiter_loop(self):
""" Gets responses from executor and places in the return queue."""
while self.running:
# Get responses and place in queue.
for response in self.engine.await_responses(
timeout=datetime.timedelta(milliseconds=100)):
req_id = response.request_id
if response.has_error():
self.return_queue(req_id).put(
(req_id, None, None, response.error_msg))
else:
tensors = (
response.result.output_token_ids,
response.result.context_logits,
response.result.generation_logits,
response.result.log_probs,
)
self.return_queue(req_id).put(
(response.request_id, tensors, response.result.is_final,
None))
if response.result.is_final:
self._pending.remove(req_id)
# Get stats and place in queue.
for stats in self.engine.get_latest_iteration_stats():
while self.stats_queue.full():
self.stats_queue.get()
self.stats_queue.put(stats.to_json_str())
def submit(self, request: GenerationRequest) -> GenerationResult:
"""
Low-level API to the executor. Return a "future" GenerationResult which can be waited.
"""
if self.rank != 0:
raise NotImplementedError("Only rank 0 can submit requests.")
self.create_stats_queue()
self.start_awaiter_thread()
req_id = self.engine.enqueue_request(request.as_executor_request())
request.set_id(req_id)
result = GenerationResult(request, request.tokenizer)
self._results[req_id] = result
self._pending.add(req_id)
return result
def get_stats(self):
return self.stats_queue.get()
async def aget_stats(self):
assert self.stats_aqueue is not None
return await self.stats_aqueue.get()
def shutdown(self):
if self.engine is not None:
self.running = False
if self.engine.can_enqueue_requests():
if self.awaiter_thread.is_alive():
self.awaiter_thread.join()
self.engine.shutdown()
self.engine = None
def block_subordinates(self):
if self.rank != 0:
self.shutdown()
raise self.WorkerExit(
"block_subordinates() should be used in a `with ExecutorBindingsWorker() as ...:` block"
)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback) -> bool:
self.shutdown()
return exc_type is None or exc_type == ExecutorBindingsWorker.WorkerExit
def __del__(self):
self.shutdown()
def wait_first_completed(
self, futures: List[GenerationResult]
) -> Generator[GenerationResult, None, None]:
wait_set = set(f.generation_request.id for f in futures)
# clear already-finished requests
for f in futures:
if f._done:
wait_set.remove(f.generation_request.id)
yield f
# wait remaining active requests
while len(wait_set) > 0:
req_id = wait_set.pop()
if req_id not in self._pending:
yield self._results[req_id]
else:
wait_set.add(req_id)
class Fifo:
def __init__(self, address: Tuple[str, int, bytes], *, is_server: bool):
self.address, self.authkey = (address[0], address[1]), address[2]
self.is_server = is_server
self.conn = None
if is_server:
self.listener = Listener(self.address,
'AF_INET',
authkey=self.authkey)
def setup(self):
if self.is_server:
self.conn = self.listener.accept()
else:
self.conn = Client(self.address, authkey=self.authkey)
def put(self, obj: Any):
if self.conn is None:
self.setup()
self.conn.send(obj)
def get(self) -> Any:
if self.conn is None:
self.setup()
return self.conn.recv()
class ExecutorBindingsProxy(GenerationExecutor):
def __init__(
self,
workers_kwargs,
model_world_size: int = 1,
mpi_session: Optional[MpiSession] = None,
) -> None:
super().__init__()
self.workers_started = False
self.tokenizer = tokenizer_factory(workers_kwargs["tokenizer"])
request_queue_addr = ("127.0.0.1", find_free_port(),
secrets.token_bytes(512))
self.request_queue = Fifo(request_queue_addr, is_server=True)
# Return request id back to dispatcher
request_id_queue_addr = ("127.0.0.1", find_free_port(),
secrets.token_bytes(512))
self.request_id_queue = Fifo(request_id_queue_addr, is_server=True)
result_queue_addr = ("127.0.0.1", find_free_port(),
secrets.token_bytes(512))
self.result_queue = Fifo(result_queue_addr, is_server=True)
self._results: Dict[int, GenerationResult] = {}
if mpi_session is None:
self.mpi_session = MpiPoolSession(n_workers=model_world_size)
else:
self.mpi_session = mpi_session
self.model_world_size = model_world_size
self.workers_kwargs = workers_kwargs
self.workers_kwargs.update({
"request_queue_addr": request_queue_addr,
"request_id_queue_addr": request_id_queue_addr,
"result_queue_addr": result_queue_addr,
})
self.dispatcher = Thread(target=self.dispatcher_thread)
@print_traceback_on_error
@staticmethod
def workers_main(
engine_dir: Path,
tokenizer: Union[str, Path, TokenizerBase],
request_queue_addr: Tuple[str, int, bytes],
request_id_queue_addr: Tuple[str, int, bytes],
result_queue_addr: Tuple[str, int, bytes],
max_beam_width: int = 1,
executor_type: tllm.TrtGptModelType = tllm.TrtGptModelType.
InflightFusedBatching,
scheduler_config: tllme.SchedulerConfig = tllme.SchedulerConfig(
tllme.CapacitySchedulerPolicy.GUARANTEED_NO_EVICT),
executor_config: tllm.TrtGptModelOptionalParams = tllm.
TrtGptModelOptionalParams()
) -> None:
result_queue = None
if mpi_rank() == 0:
request_queue = Fifo(request_queue_addr, is_server=False)
request_id_queue = Fifo(request_id_queue_addr, is_server=False)
result_queue = Fifo(result_queue_addr, is_server=False)
# Only the failure on rank0 can be captured here. All the non-rank0 process will hang once the executor runtime
# is successfully initialized, that is controlled within cpp runtime.
# To capture the failure on all the ranks, more work should be done in the cpp runtime.
# TODO[chunweiy]: fix the non-rank0 process failure
init_ok = True
try:
executor = ExecutorBindingsWorker(engine_dir, tokenizer,
max_beam_width, executor_type,
scheduler_config, executor_config)
except Exception as e:
init_ok = False
raise e
finally:
if mpi_rank() == 0:
result_queue.put(init_ok)
with ContextManager(executor) as executor:
if mpi_rank() == 0:
executor.set_result_queue(result_queue)
while (req := request_queue.get()) is not None:
result = executor.submit(req)
request_id_queue.put(result.generation_request.id)
result_queue.put(None)
else:
executor.block_subordinates()
def dispatcher_thread(self):
""" Collect centralized results from result queue and dispatch them in the
correct GenerationResult queues. """
while (res := self.result_queue.get()) is not None:
req_id = res[0]
self._results[req_id].queue.put(res)
def start(self):
self.mpi_futures = self.mpi_session.submit(
ExecutorBindingsProxy.workers_main, **self.workers_kwargs)
self.workers_started = True
ack = self.result_queue.get()
if not ack:
raise RuntimeError("worker initialization failed")
self.dispatcher.start()
def shutdown(self):
if not self.workers_started:
return
self.request_queue.put(None)
for f in self.mpi_futures:
f.result()
if self.dispatcher.is_alive():
self.dispatcher.join()
self.workers_started = False
def submit(self, request: GenerationRequest) -> GenerationResult:
"""
Low-level API to the executor. Return a "future" GenerationResult which can be waited.
Forwards the request to the workers through the request queue.
"""
if not self.workers_started:
self.start()
tokenizer = request.tokenizer
# no need to send the tokenizer to the executor,
# saves communication time
request.tokenizer = None
self.request_queue.put(request)
# Await req id.
req_id = self.request_id_queue.get()
request.set_id(req_id)
result = GenerationResult(request, tokenizer)
self._results[req_id] = result
request.tokenizer = tokenizer
return result
def get_stats(self):
# TODO: https://jirasw.nvidia.com/browse/TRTLLM-514
pass
async def aget_stats(self):
# TODO: https://jirasw.nvidia.com/browse/TRTLLM-514
pass
def __del__(self):
self.shutdown()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.shutdown()
return False