TensorRT-LLMs/tensorrt_llm/layers/linear.py
Kaiyu Xie bf0a5afc92
Update TensorRT-LLM (#1598)
* Update TensorRT-LLM
2024-05-14 16:43:41 +08:00

339 lines
12 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import numpy as np
import tensorrt as trt
import torch
import torch.nn.functional as F
from .._common import default_net, default_trtnet
from .._utils import pad_vocab_size, set_obj_attrs, str_dtype_to_trt
from ..functional import (Tensor, _add_plugin_info, _create_tensor, allgather,
allreduce, cast, matmul)
from ..mapping import Mapping
from ..module import Module
from ..parameter import Parameter
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
from .lora import LoraRuntimeParams
def _gemm_plugin(input: Tensor,
mat2: Tensor,
transa: bool = False,
transb: bool = False,
pad_lda: int = 0,
pad_ldb: int = 0,
use_fp8: bool = False,
strict_dtype: Optional[trt.DataType] = None) -> Tensor:
'''
output = op(mat2)op(input)
Parameters:
input : Tensor (On GPU)
The input tensor.
mat2 : Tensor (On GPU)
The mat2 tensor.
transa : bool
Is the input tensor transposed? Set to 'True' if you want the
input tensor to be transposed, 'False' otherwise.
transb : bool
Is the mat2 tensor transposed? Set to 'True' if you want the
mat2 tensor to be transposed, 'False' otherwise.
pad_lda: int
Padding to the lead dimension of input tensor. It is used to
support the strided GEMM that only uses the sub-tensor for
computation. The GEMM plugin computation is
[N, K] x [K, M+pad_lda] -> [N, M] if transa,
[N, K] x [K+pad_lda, M] -> [N, M] if not transa.
pad_ldb: int
Padding to the lead dimension of mat2 tensor. It is used to
support the strided GEMM that only uses the sub-tensor for
computation. The GEMM plugin computation is
[N, K+pad_ldb] x [K, M] -> [N, M] if transb,
[N+pad_ldb, K] x [K, M] -> [N, M] if not transb.
use_fp8: bool
Do we use fp8 GEMM.
strict_dtype: trt.DataType
Set the data type for the GEMM plugin. If it is None, the data
type is the gemm_plugin type set in the plugin_config.
'''
plg_creator = trt.get_plugin_registry().get_plugin_creator(
'Gemm', '1', TRT_LLM_PLUGIN_NAMESPACE)
assert plg_creator is not None
transa = 1 if transa else 0
transa = trt.PluginField("transa", np.array(transa, dtype=np.int32),
trt.PluginFieldType.INT32)
transb = 1 if transb else 0
transb = trt.PluginField("transb", np.array(transb, dtype=np.int32),
trt.PluginFieldType.INT32)
pad_lda = trt.PluginField("pad_lda", np.array(pad_lda, dtype=np.int32),
trt.PluginFieldType.INT32)
pad_ldb = trt.PluginField("pad_ldb", np.array(pad_ldb, dtype=np.int32),
trt.PluginFieldType.INT32)
use_fp8 = 1 if use_fp8 else 0
use_fp8 = trt.PluginField("use_fp8", np.array(use_fp8, dtype=np.int32),
trt.PluginFieldType.INT32)
if strict_dtype is not None:
assert isinstance(strict_dtype, trt.DataType)
p_dtype = strict_dtype
else:
p_dtype = str_dtype_to_trt(default_net().plugin_config.gemm_plugin)
pf_type = trt.PluginField("type_id", np.array([int(p_dtype)], np.int32),
trt.PluginFieldType.INT32)
pfc = trt.PluginFieldCollection(
[transa, transb, pad_lda, pad_ldb, pf_type, use_fp8])
gemm_plug = plg_creator.create_plugin("gemm", pfc)
plug_inputs = [input.trt_tensor, mat2.trt_tensor]
layer = default_trtnet().add_plugin_v2(plug_inputs, gemm_plug)
_add_plugin_info(layer, plg_creator, "gemm", pfc)
return _create_tensor(layer.get_output(0), layer)
class Linear(Module):
def __init__(self,
in_features,
out_features,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
gather_output=True,
share_weight=None,
strict_dtype=False,
pad_lda=0):
super().__init__()
self.in_features = in_features
self.out_features = out_features // tp_size
self.dtype = dtype
self.pad_lda = pad_lda
if not share_weight:
self.weight = Parameter(shape=(self.out_features, self.in_features),
dtype=dtype)
set_obj_attrs(self.weight, {
"weight_loader": self.weight_loader,
})
else:
self.weight = share_weight
self.tp_size = tp_size
self.tp_group = tp_group
self.gather_output = gather_output
self.strict_dtype = self.dtype if strict_dtype else None
if bias:
self.bias = Parameter(shape=(self.out_features, ), dtype=dtype)
set_obj_attrs(self.bias, {
"weight_loader": self.weight_loader,
})
else:
self.register_parameter('bias', None)
# see add_lora in tensorrt_llm/models/modeling_utils.py for LoRA initialization
self.lora = None
def multiply_gather(
self,
x,
weight,
gemm_plugin: Optional[str] = None,
use_fp8: bool = False,
lora_runtime_params: Optional[LoraRuntimeParams] = None):
hidden_state = x
if gemm_plugin:
x = _gemm_plugin(x,
weight,
transb=True,
pad_lda=self.pad_lda,
use_fp8=use_fp8,
strict_dtype=self.strict_dtype)
else:
x = matmul(x, weight, transb=True)
if default_net(
).plugin_config.lora_plugin and lora_runtime_params is not None:
x = x + self.lora(hidden_state,
lora_runtime_params=lora_runtime_params)
if self.bias is not None:
bias = cast(self.bias.value, x.dtype)
x = x + bias
if self.gather_output and self.tp_size > 1 and self.tp_group is not None:
# [dim0, local_dim] -> [dim0 * tp_size, local_dim] --> [dim0, local_dim * tp_size]
x = allgather(x, self.tp_group, gather_dim=-1)
return x
def forward(self,
x,
lora_runtime_params: Optional[LoraRuntimeParams] = None):
return self.multiply_gather(
x,
self.weight.value,
gemm_plugin=default_net().plugin_config.gemm_plugin,
lora_runtime_params=lora_runtime_params)
def weight_loader(self, mapping: Mapping, param: Parameter,
loaded_weight: torch.Tensor):
tp_rank = mapping.tp_rank
output_dim = 0
shard_size = param._shape[output_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
param.value = loaded_weight
ColumnLinear = Linear
class QKVColumnLinear(ColumnLinear):
def weight_loader(self, mapping: Mapping, param: Parameter,
loaded_weight: torch.Tensor):
tp_rank = mapping.tp_rank
output_dim = 0
shard_size = param._shape[output_dim] // 3
start_idx = tp_rank * shard_size
# reshape for qkv_weights
assert loaded_weight.shape[output_dim] % 3 == 0
loaded_weight = loaded_weight.reshape(
3, loaded_weight.shape[output_dim] // 3, -1)
loaded_weight = loaded_weight.narrow(output_dim + 1, start_idx,
shard_size)
loaded_weight = loaded_weight.reshape(
loaded_weight.shape[output_dim + 1] * 3, -1)
# for bias
if len(param._shape) == 1:
loaded_weight.squeeze_(-1)
param.value = loaded_weight
class ParallelLMHead(ColumnLinear):
def weight_loader(self, mapping: Mapping, param: Parameter,
loaded_weight: torch.Tensor):
tp_rank = mapping.tp_rank
output_dim = 0
shard_size = param._shape[output_dim]
start_idx = tp_rank * shard_size
# vocab padding for TP
vocab_size = loaded_weight.shape[output_dim]
pad_width = pad_vocab_size(vocab_size, self.tp_size) - vocab_size
if pad_width > 0:
loaded_weight = F.pad(loaded_weight, (0, 0, 0, pad_width),
mode="constant",
value=0)
loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
param.value = loaded_weight
class RowLinear(Module):
def __init__(self,
in_features,
out_features,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
strict_dtype: bool = False,
pad_lda=0):
super().__init__()
self.in_features = in_features // tp_size
self.out_features = out_features
self.dtype = dtype
self.pad_lda = pad_lda
self.weight = Parameter(shape=(self.out_features, self.in_features),
dtype=dtype)
set_obj_attrs(self.weight, {
"weight_loader": self.weight_loader,
})
if bias:
self.bias = Parameter(shape=(self.out_features, ), dtype=dtype)
else:
self.register_parameter('bias', None)
# see add_lora in tensorrt_llm/models/modeling_utils.py for LoRA initialization
self.lora = None
self.tp_group = tp_group
self.tp_size = tp_size
self.strict_dtype = self.dtype if strict_dtype else None
def multiply_reduce(
self,
x,
weight,
gemm_plugin: Optional[str] = None,
use_fp8: bool = False,
lora_runtime_params: Optional[LoraRuntimeParams] = None):
hidden_state = x
if gemm_plugin:
x = _gemm_plugin(x,
weight,
transb=True,
pad_lda=self.pad_lda,
use_fp8=use_fp8,
strict_dtype=self.strict_dtype)
else:
x = matmul(x, weight, transb=True)
if default_net(
).plugin_config.lora_plugin and lora_runtime_params is not None:
x = x + self.lora(hidden_state,
lora_runtime_params=lora_runtime_params)
if self.tp_size > 1 and self.tp_group is not None:
x = allreduce(x, self.tp_group)
if self.bias is not None:
bias = cast(self.bias.value, x.dtype)
x = x + bias
return x
def forward(self,
x,
lora_runtime_params: Optional[LoraRuntimeParams] = None):
return self.multiply_reduce(
x,
self.weight.value,
gemm_plugin=default_net().plugin_config.gemm_plugin,
lora_runtime_params=lora_runtime_params)
def weight_loader(self, mapping: Mapping, param: Parameter,
loaded_weight: torch.Tensor):
tp_rank = mapping.tp_rank
input_dim = 1
shard_size = param._shape[input_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(input_dim, start_idx, shard_size)
param.value = loaded_weight