mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com> Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com> Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com> Co-authored-by: CoderHam <hemant@cohere.com> Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
191 lines
7.3 KiB
Python
191 lines
7.3 KiB
Python
from typing import Optional
|
|
|
|
import numpy as np
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import PositionEmbeddingType, Tensor
|
|
from ...layers import (MLP, Attention, AttentionMaskType, Embedding,
|
|
ParallelLMHead, RmsNorm)
|
|
from ...module import Module
|
|
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
|
|
PretrainedConfig, save_checkpoint)
|
|
from .convert import convert_hf_config, convert_hf_weights
|
|
|
|
|
|
class Phi3DecoderLayer(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer_idx = layer_idx
|
|
tp_group = config.mapping.tp_group
|
|
tp_size = config.mapping.tp_size
|
|
|
|
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
|
|
local_layer_idx = layer_idx - layers_range[0]
|
|
position_embedding_type = PositionEmbeddingType.rope_gpt_neox
|
|
|
|
rope_scaling_short_factors = 1.0
|
|
rope_scaling_long_factors = 1.0
|
|
original_max_position_embeddings = config.max_position_embeddings
|
|
if hasattr(config, "longrope_scaling_short_factors"):
|
|
rope_scaling_short_factors = np.asarray(
|
|
config.longrope_scaling_short_factors).astype(np.float32)
|
|
rope_scaling_long_factors = np.asarray(
|
|
config.longrope_scaling_long_factors).astype(np.float32)
|
|
original_max_position_embeddings = config.original_max_position_embeddings
|
|
position_embedding_type = PositionEmbeddingType.long_rope
|
|
|
|
self.attention = Attention(
|
|
local_layer_idx=local_layer_idx,
|
|
hidden_size=config.hidden_size,
|
|
num_attention_heads=config.num_attention_heads,
|
|
position_embedding_type=position_embedding_type,
|
|
rotary_embedding_base=config.rotary_base,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
dtype=config.dtype,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
bias=False,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=config.quant_mode,
|
|
rope_scaling_short_factors=rope_scaling_short_factors,
|
|
rope_scaling_long_factors=rope_scaling_long_factors,
|
|
original_max_position_embeddings=original_max_position_embeddings,
|
|
)
|
|
|
|
self.mlp = MLP(hidden_size=config.hidden_size,
|
|
ffn_hidden_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
dtype=config.dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=config.quant_mode,
|
|
bias=False)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: Tensor,
|
|
attention_mask=None,
|
|
use_cache=False,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
):
|
|
|
|
input_layernorm_output = self.input_layernorm(hidden_states)
|
|
attention_output = self.attention(
|
|
input_layernorm_output,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
norm_before_bmm1=True,
|
|
)
|
|
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
|
|
post_attention_input = hidden_states + attention_output
|
|
post_attention_output = self.post_layernorm(post_attention_input)
|
|
feed_forward_hidden_states = self.mlp(post_attention_output, )
|
|
hidden_states = post_attention_input + feed_forward_hidden_states
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class Phi3Model(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
super().__init__()
|
|
self.vocab_embedding = Embedding(num_embeddings=config.vocab_size,
|
|
embedding_dim=config.hidden_size,
|
|
dtype=config.dtype)
|
|
|
|
self.layers = DecoderLayerList(Phi3DecoderLayer, config)
|
|
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Tensor,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
attention_mask=None,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
prompt_embedding_table=None,
|
|
prompt_tasks=None,
|
|
prompt_vocab_size=None,
|
|
):
|
|
args = [prompt_embedding_table, prompt_tasks, prompt_vocab_size
|
|
] if prompt_embedding_table is not None else []
|
|
hidden_states = self.vocab_embedding(input_ids, *args)
|
|
|
|
hidden_states = self.layers(
|
|
hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
)
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
if use_cache:
|
|
return (hidden_states, tuple(presents))
|
|
return hidden_states
|
|
|
|
|
|
class Phi3ForCausalLM(DecoderModelForCausalLM):
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
self.check_config(config)
|
|
transformer = Phi3Model(config)
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
config.mapping.tp_size)
|
|
|
|
lm_head = ParallelLMHead(config.hidden_size,
|
|
vocab_size_padded,
|
|
bias=False,
|
|
dtype=config.dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
gather_output=True)
|
|
|
|
super().__init__(config, transformer, lm_head)
|
|
|
|
def check_config(self, config):
|
|
config.set_if_not_exist('rotary_base', 10000.0)
|
|
|
|
@classmethod
|
|
def convert_hf_checkpoint(cls,
|
|
hf_model_dir: str,
|
|
dtype: Optional[str] = "float16",
|
|
output_dir: Optional[str] = None,
|
|
**kwargs):
|
|
'''
|
|
Convert Huggingface checkpoint to TRT-LLM checkpoint
|
|
'''
|
|
hf_model = AutoModelForCausalLM.from_pretrained(hf_model_dir,
|
|
torch_dtype="auto",
|
|
trust_remote_code=True)
|
|
config = convert_hf_config(hf_model.config, dtype=dtype, **kwargs)
|
|
weights = convert_hf_weights(hf_model, dtype=dtype, **kwargs)
|
|
|
|
if output_dir:
|
|
save_checkpoint(output_dir, config=config, weights=weights)
|
|
|
|
return {"weights": weights, "config": config}
|