TensorRT-LLMs/tests/bindings/test_gpt_manager.py
Kaiyu Xie f430a4b447
Update TensorRT-LLM (#1688)
* Update TensorRT-LLM

---------

Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com>
Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com>
Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com>
Co-authored-by: CoderHam <hemant@cohere.com>
Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
2024-05-28 20:07:49 +08:00

331 lines
13 KiB
Python

import json as _json
import os as _os
import pathlib as _pl
import sys as _sys
import time as _time
import typing as _tp
import numpy as _np
import pytest
import torch as _tor
from binding_test_utils import *
from transformers import AutoTokenizer
import tensorrt_llm.bindings as _tb
_sys.path.append(_os.path.join(_os.path.dirname(__file__), '..'))
from utils.cpp_paths import *
from utils.llm_data import llm_models_root
from utils.util import skip_pre_ampere
@pytest.mark.parametrize("variant, results_file", [
("fp16-plugin-packed-paged",
"output_tokens_fp16_plugin_packed_paged_tp1_pp1.npy"),
])
@skip_pre_ampere # ContextFMHAType with fp32 acc is not supported in pre-ampere architecture
def test_gpt_manager(variant, results_file, llm_root: _pl.Path,
resource_path: _pl.Path, engine_path: _pl.Path,
data_path: _pl.Path):
model_dir = "gpt2"
tp_size = 1
pp_size = 1
beam_width = 1
max_batch_size = 8
end_id = 50256
pad_id = 50256
# load input data
input_path = data_path / "input_tokens.npy"
assert input_path.is_file()
given_input = _np.load(input_path).astype("int32")
input_shape = given_input.shape
assert len(input_shape) == 2
num_given_inputs = input_shape[0]
assert max_batch_size <= num_given_inputs
max_input_length = input_shape[1]
given_input_lengths = sequence_lengths(given_input, pad_id)
assert _np.all(given_input_lengths <= max_input_length)
# load expected output data
results_path = data_path / model_dir / (
"sampling"
if beam_width == 1 else f"beam_search_{beam_width}") / results_file
if not results_path.exists():
model_cache = llm_models_root()
model_cache_arg = ["--model_cache", str(model_cache)
] if model_cache is not None else []
prepare_model_tests(llm_root, resource_path, "gpt", model_cache_arg)
assert results_path.is_file()
expected_output = _np.load(results_path)
output_shape = expected_output.shape
assert len(output_shape) == 2
assert num_given_inputs * beam_width == output_shape[0]
max_seq_length = output_shape[1]
assert max_input_length <= max_seq_length
expected_output_lengths = sequence_lengths(expected_output, end_id)
assert _np.all(expected_output_lengths <= max_seq_length)
gpu_size_path = f"tp{tp_size}-pp{pp_size}-gpu"
model_path = engine_path / model_dir / variant / gpu_size_path
assert model_path.is_dir()
config_path = model_path / "config.json"
config_json = _tb.GptJsonConfig.parse_file(config_path)
assert config_json.tensor_parallelism == tp_size
assert config_json.pipeline_parallelism == pp_size
world_config = _tb.WorldConfig.mpi(tensor_parallelism=tp_size,
pipeline_parallelism=pp_size)
engine_filename = config_json.engine_filename(world_config)
assert (model_path / engine_filename).is_file()
config_json.model_config
max_new_tokens = max_seq_length - max_input_length
inference_request_list = []
for i, (req, length) in enumerate(zip(given_input, given_input_lengths)):
ir = _tb.InferenceRequest(i)
ir.input_ids = _tor.tensor(req[:length].tolist(), dtype=_tor.int32)
ir.max_new_tokens = _tor.tensor([[length + max_new_tokens]],
dtype=_tor.int32)
ir.end_id = _tor.tensor([end_id], dtype=_tor.int32)
ir.pad_id = _tor.tensor([pad_id], dtype=_tor.int32)
ir.beam_width = _tor.tensor([beam_width], dtype=_tor.int32)
ir.temperature = _tor.tensor([1.0], dtype=_tor.float32)
ir.min_length = _tor.tensor([1], dtype=_tor.int32)
ir.random_seed = _tor.tensor([42], dtype=_tor.int64)
ir.runtime_top_k = _tor.tensor([0], dtype=_tor.int32)
ir.runtime_top_p = _tor.tensor([0.0], dtype=_tor.float32)
inference_request_list.append(ir)
def logits_post_processor(req_id: int, logits: _tor.Tensor,
ids: _tp.List[_tp.List[int]],
stream: _tor.Stream):
del req_id, ids
cuda_stream = _tor.cuda.Stream(
stream_id=stream.stream_id,
device_index=stream.device_index,
device_type=1, # == kCUDA
)
with _tor.cuda.stream(cuda_stream):
logits[:] = float("-inf")
logits[..., 42] = 0
ir = _tb.InferenceRequest(42, logits_post_processor)
ir.input_ids = _tor.tensor(given_input[0].tolist(), dtype=_tor.int32)
ir.max_new_tokens = _tor.tensor([[8]], dtype=_tor.int32)
ir.end_id = _tor.tensor([end_id], dtype=_tor.int32)
ir.pad_id = _tor.tensor([pad_id], dtype=_tor.int32)
ir.beam_width = _tor.tensor([beam_width], dtype=_tor.int32)
ir.temperature = _tor.tensor([1.0], dtype=_tor.float32)
ir.min_length = _tor.tensor([1], dtype=_tor.int32)
ir.random_seed = _tor.tensor([42], dtype=_tor.int64)
ir.runtime_top_k = _tor.tensor([0], dtype=_tor.int32)
ir.runtime_top_p = _tor.tensor([0.0], dtype=_tor.float32)
inference_request_list.append(ir)
def fetch_requests(max_num_sequences: int):
nonlocal inference_request_list
fetched = []
for _ in range(max_num_sequences):
try:
fetched.append(inference_request_list.pop())
except IndexError:
break
return fetched
def response_cb(req_id: int, tensors: _tp.List[_tb.NamedTensor],
is_ok: bool, err_msg: str):
nonlocal remaining_requests
remaining_requests -= 1
assert is_ok
assert not err_msg
tensor_dict = {item.name: item.tensor for item in tensors}
batch_idx = req_id
observed_output = tensor_dict[_tb.tensor_names.OUTPUT_IDS]
assert observed_output is not None
if req_id == 42:
outputs = observed_output[..., len(given_input[0]):]
assert _tor.allclose(outputs, _tor.tensor([42], dtype=_tor.int32))
return
expected_length = expected_output_lengths[batch_idx]
observed_length = tensor_dict[_tb.tensor_names.SEQUENCE_LENGTH].item(
) - given_input_lengths[batch_idx]
assert expected_length == observed_length, (batch_idx, expected_length,
observed_length)
expected = expected_output[batch_idx, :expected_length]
observed = observed_output[0, 0, :expected_length].numpy()
unmatched = expected != observed
if _np.any(unmatched):
assert False, (batch_idx, _np.where(unmatched),
_np.column_stack((expected, observed))[unmatched])
def should_stop():
return set()
def stats_cb(stats_json: str):
assert _json.loads(stats_json)
opt_params = _tb.TrtGptModelOptionalParams()
memory_counters = _tb.MemoryCounters.instance()
init_gpu_mem = memory_counters.gpu
for _ in range(3):
remaining_requests = len(inference_request_list)
with _tb.GptManager(
model_path, _tb.TrtGptModelType.InflightBatching, 1,
_tb.executor.SchedulerConfig(
_tb.executor.CapacitySchedulerPolicy.MAX_UTILIZATION),
fetch_requests, response_cb, should_stop, stats_cb, opt_params,
10000) as manager:
while remaining_requests > 0:
_time.sleep(0.1)
assert manager is not None
assert memory_counters.gpu > init_gpu_mem
assert memory_counters.gpu == init_gpu_mem
@pytest.mark.parametrize("variant, results_file", [
("fp16-plugin-packed-paged",
"output_tokens_fp16_plugin_packed_paged_tp1_pp1.npy"),
])
def test_gpt_manager_constrained_generation(variant, results_file,
llm_root: _pl.Path,
resource_path: _pl.Path,
engine_path: _pl.Path,
data_path: _pl.Path):
try:
from lmformatenforcer import (JsonSchemaParser, TokenEnforcer,
TokenEnforcerTokenizerData)
from pydantic import BaseModel
except ImportError:
pytest.skip("Cannot import lmformatenforcer, skipping test")
def _build_regular_tokens_list(
tokenizer) -> _tp.List[_tp.Tuple[int, str, bool]]:
token_0 = [tokenizer.encode("0")[-1]]
regular_tokens = []
vocab_size = tokenizer.vocab_size
for token_idx in range(vocab_size):
if token_idx in tokenizer.all_special_ids:
continue
# We prepend token 0 and skip the first letter of the result to get a space if the token is a start word.
tensor_after_0 = _tor.tensor(token_0 + [token_idx], dtype=_tor.long)
decoded_after_0 = tokenizer.decode(tensor_after_0)[1:]
decoded_regular = tokenizer.decode(token_0)
is_word_start_token = len(decoded_after_0) > len(decoded_regular)
regular_tokens.append(
(token_idx, decoded_after_0, is_word_start_token))
return regular_tokens
def build_token_enforcer(tokenizer, character_level_parser):
"""
Build logits processor for feeding it into generate function (use_py_session should be True)
"""
regular_tokens = _build_regular_tokens_list(tokenizer)
def _decode(tokens: _tp.List[int]) -> str:
tensor = _tor.tensor(tokens, dtype=_tor.long)
return tokenizer.decode(tensor)
tokenizer_data = TokenEnforcerTokenizerData(regular_tokens, _decode,
tokenizer.eos_token_id)
return TokenEnforcer(tokenizer_data, character_level_parser)
tp_size = 1
pp_size = 1
model_dir = "gpt2"
gpu_size_path = f"tp{tp_size}-pp{pp_size}-gpu"
model_path = engine_path / model_dir / variant / gpu_size_path
tokenizer = AutoTokenizer.from_pretrained(model_dir)
input = "Please give me information about Michael Jordan. You MUST answer using the following json schema: "
prompt = tokenizer.encode(input)
class AnswerFormat(BaseModel):
last_name: str
year_of_birth: int
parser = JsonSchemaParser(AnswerFormat.model_json_schema())
token_enforcer = build_token_enforcer(tokenizer, parser)
def fetch_requests(max_num_sequences: int):
nonlocal inference_request_list
fetched = []
for _ in range(max_num_sequences):
try:
fetched.append(inference_request_list.pop())
except IndexError:
break
return fetched
def logits_post_processor(req_id: int, logits: _tor.Tensor,
ids: _tp.List[_tp.List[int]],
stream: _tor.Stream):
del req_id
cuda_stream = _tor.cuda.Stream(
stream_id=stream.stream_id,
device_index=stream.device_index,
device_type=1, # == kCUDA
)
def _trim(ids):
return [x for x in ids if x != tokenizer.eos_token_id]
allowed = token_enforcer.get_allowed_tokens(_trim(ids[0]))
mask = _tor.full_like(logits, fill_value=float("-inf"), device="cpu")
mask[:, :, allowed] = 0
mask = mask.to(logits.device)
with _tor.cuda.stream(cuda_stream):
logits += mask
result = ""
def response_cb(req_id: int, tensors: _tp.List[_tb.NamedTensor],
is_finished: bool, err_msg: str):
nonlocal remaining_requests, result
assert not err_msg
assert is_finished
tensors_dict = {t.name: t.tensor for t in tensors}
result = tokenizer.decode(tensors_dict["output_ids"].squeeze().tolist())
remaining_requests -= 1
def should_stop():
return set()
def stats_cb(stats_json: str):
assert _json.loads(stats_json)
inference_request_list = []
ir = _tb.InferenceRequest(42, logits_post_processor)
ir.input_ids = _tor.tensor(prompt, dtype=_tor.int32)
ir.max_new_tokens = _tor.tensor([[64]], dtype=_tor.int32)
ir.end_id = _tor.tensor([tokenizer.eos_token_id], dtype=_tor.int32)
inference_request_list.append(ir)
remaining_requests = len(inference_request_list)
opt_params = _tb.TrtGptModelOptionalParams()
with _tb.GptManager(
model_path, _tb.TrtGptModelType.InflightBatching, 1,
_tb.executor.SchedulerConfig(
_tb.executor.CapacitySchedulerPolicy.MAX_UTILIZATION),
fetch_requests, response_cb, should_stop, stats_cb, opt_params,
10000):
while remaining_requests > 0:
_time.sleep(0.1)
assert result == input + ' { "last_name": "Michael Jordan", "year_of_birth": 18 } '