mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-29 23:23:48 +08:00
* Update TensorRT-LLM --------- Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
79 lines
3.0 KiB
Python
79 lines
3.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from parameterized import parameterized
|
|
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
|
|
|
|
import tensorrt_llm
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import unittest_name_func
|
|
|
|
|
|
class TestFunctional(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
@parameterized.expand([
|
|
((3, 5), 1, 1, True),
|
|
((3, 4, 6), 2, 0, True),
|
|
((3, 5), 1, 1, False),
|
|
((3, 4, 6), 2, 0, False),
|
|
],
|
|
name_func=unittest_name_func)
|
|
def test_topk(self, input_shape, k, d, largest):
|
|
value_dtype = 'float32'
|
|
indices_dtype = 'int32'
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
input_data = np.random.rand(*input_shape).astype(np.float32)
|
|
m = tensorrt_llm.functional.constant(input_data)
|
|
topk_values, topk_indices = tensorrt_llm.functional.topk(
|
|
m, k, d, largest=largest)
|
|
topk_values = topk_values.trt_tensor
|
|
topk_indices = topk_indices.trt_tensor
|
|
topk_values.name = 'output_values'
|
|
topk_indices.name = 'output_indices'
|
|
network.mark_output(topk_values)
|
|
network.mark_output(topk_indices)
|
|
topk_values.dtype = tensorrt_llm.str_dtype_to_trt(value_dtype)
|
|
topk_indices.dtype = tensorrt_llm.str_dtype_to_trt(indices_dtype)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork(
|
|
(builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={})
|
|
values, indices = torch.topk(torch.Tensor(input_data),
|
|
k,
|
|
dim=d,
|
|
largest=largest)
|
|
|
|
np.testing.assert_allclose(values.cpu().numpy(),
|
|
outputs['output_values'],
|
|
atol=1e-5)
|
|
np.testing.assert_allclose(indices.cpu().numpy(),
|
|
outputs['output_indices'])
|