mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com> Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com> Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com> Co-authored-by: CoderHam <hemant@cohere.com> Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
503 lines
20 KiB
Python
503 lines
20 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import tempfile
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
# isort: off
|
|
import torch
|
|
# isort: on
|
|
import os
|
|
import sys
|
|
|
|
from parameterized import parameterized
|
|
from transformers import BloomConfig, BloomForCausalLM
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Builder
|
|
from tensorrt_llm._utils import str_dtype_to_torch
|
|
from tensorrt_llm.network import net_guard
|
|
from tensorrt_llm.plugin.plugin import ContextFMHAType
|
|
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
|
|
from tensorrt_llm.runtime.generation import _prepare_attention_mask
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
|
|
|
|
from examples.bloom.convert_checkpoint import convert_hf_bloom
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import skip_fp32_accum_pre_ampere, unittest_name_func
|
|
|
|
|
|
class TestBloom(unittest.TestCase):
|
|
|
|
def _gen_hf_bloom(self, hidden_act, n_layer, max_length, dtype):
|
|
bloom_config = BloomConfig(
|
|
hidden_act=hidden_act,
|
|
n_layer=n_layer,
|
|
max_length=max_length,
|
|
torch_dtype=dtype,
|
|
)
|
|
|
|
hf_bloom = BloomForCausalLM(bloom_config).cuda().eval()
|
|
return bloom_config, hf_bloom
|
|
|
|
def _gen_tensorrt_llm_network(self, network, builder, hf_bloom,
|
|
bloom_config, batch_size, input_len,
|
|
output_len, fp16, gpt_attention_plugin,
|
|
tensor_parallel,
|
|
apply_query_key_layer_scaling):
|
|
dtype = 'float16' if fp16 else 'float32'
|
|
config = {
|
|
'architecture': 'BloomForCausalLM',
|
|
'dtype': dtype,
|
|
'num_hidden_layers': bloom_config.n_layer,
|
|
'num_attention_heads': bloom_config.n_head,
|
|
'hidden_size': bloom_config.hidden_size,
|
|
'vocab_size': bloom_config.vocab_size,
|
|
'position_embedding_type': 'alibi',
|
|
'max_position_embeddings': input_len + output_len,
|
|
'hidden_act': 'gelu',
|
|
'mapping': {
|
|
'world_size': tensor_parallel,
|
|
'tp_size': tensor_parallel
|
|
},
|
|
'use_parallel_embedding': False,
|
|
'embedding_sharding_dim': 0,
|
|
'share_embedding_table': False,
|
|
}
|
|
config = tensorrt_llm.models.PretrainedConfig.from_dict(config)
|
|
# config.set_rank(rank)
|
|
weights = convert_hf_bloom(hf_bloom,
|
|
tensor_parallel=tensor_parallel,
|
|
dtype=dtype)
|
|
tensorrt_llm_bloom = tensorrt_llm.models.BloomForCausalLM(config)
|
|
tensorrt_llm_bloom.load(weights)
|
|
|
|
with net_guard(network):
|
|
network.set_named_parameters(tensorrt_llm_bloom.named_parameters())
|
|
inputs = tensorrt_llm_bloom.prepare_inputs(
|
|
max_batch_size=batch_size,
|
|
max_input_len=input_len,
|
|
max_seq_len=input_len + output_len,
|
|
use_cache=True,
|
|
max_beam_width=1)
|
|
# Prepare
|
|
tensorrt_llm_bloom(**inputs)
|
|
|
|
return network
|
|
|
|
def _gen_tensorrt_llm_runtime(self,
|
|
log_level,
|
|
dtype,
|
|
world_size,
|
|
rank,
|
|
bloom_config,
|
|
hf_bloom,
|
|
model,
|
|
use_plugin,
|
|
batch_size,
|
|
input_len,
|
|
output_len,
|
|
use_refit,
|
|
fast_building=False,
|
|
apply_query_key_layer_scaling=False,
|
|
context_fmha_type=ContextFMHAType.disabled,
|
|
enable_remove_input_padding=False):
|
|
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
|
|
|
|
runtime = None
|
|
builder = Builder()
|
|
fp16 = (dtype == 'float16')
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
builder_config = builder.create_builder_config(
|
|
name='bloom',
|
|
precision=dtype,
|
|
timing_cache='model.cache',
|
|
tensor_parallel=world_size, # TP only
|
|
use_refit=use_refit,
|
|
strongly_typed=fp16,
|
|
)
|
|
network = builder.create_network()
|
|
network.plugin_config.to_legacy_setting()
|
|
if use_plugin:
|
|
network.plugin_config.gpt_attention_plugin = dtype
|
|
if fast_building:
|
|
network.plugin_config.gemm_plugin = dtype
|
|
network.plugin_config.set_context_fmha(context_fmha_type)
|
|
if enable_remove_input_padding:
|
|
network.plugin_config.remove_input_padding = True
|
|
|
|
self._gen_tensorrt_llm_network(network, builder, hf_bloom,
|
|
bloom_config, batch_size, input_len,
|
|
output_len, fp16, use_plugin,
|
|
world_size,
|
|
apply_query_key_layer_scaling)
|
|
|
|
engine_buffer = builder.build_engine(network, builder_config)
|
|
runtime = tensorrt_llm.runtime.generation._Runtime(
|
|
engine_buffer, mapping)
|
|
return runtime, engine_buffer
|
|
|
|
def load_test_cases():
|
|
test_cases = list(
|
|
product([False, True], [
|
|
ContextFMHAType.disabled, ContextFMHAType.enabled,
|
|
ContextFMHAType.enabled_with_fp32_acc
|
|
], [False], ['float16', 'float32']))
|
|
return test_cases
|
|
|
|
@parameterized.expand(load_test_cases(), name_func=unittest_name_func)
|
|
def test_bloom(self, use_gpt_attention_plugin, context_fmha_type,
|
|
enable_remove_input_padding, dtype):
|
|
model = 'bloom'
|
|
log_level = 'error'
|
|
world_size = 1
|
|
rank = 0
|
|
hidden_act = 'gelu'
|
|
n_layer = 2
|
|
max_length = 2
|
|
batch_size = 4
|
|
beam_width = 1
|
|
seq_len = 128
|
|
total_length = seq_len + max_length
|
|
|
|
bloom_config, hf_bloom = self._gen_hf_bloom(hidden_act, n_layer,
|
|
max_length, dtype)
|
|
if bloom_config.hidden_size // bloom_config.n_head < 32 and use_gpt_attention_plugin:
|
|
pytest.skip("unsupported head_size")
|
|
runtime, _ = self._gen_tensorrt_llm_runtime(
|
|
log_level,
|
|
dtype,
|
|
world_size,
|
|
rank,
|
|
bloom_config,
|
|
hf_bloom,
|
|
model,
|
|
use_gpt_attention_plugin,
|
|
batch_size,
|
|
seq_len,
|
|
max_length,
|
|
use_refit=False,
|
|
fast_building=True,
|
|
context_fmha_type=context_fmha_type,
|
|
enable_remove_input_padding=enable_remove_input_padding)
|
|
|
|
# compare context
|
|
pad_token_id = 3
|
|
ctx_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
|
|
ctx_ids[0][-1] = pad_token_id
|
|
ctx_ids[1][-3:] = pad_token_id
|
|
ctx_ids[2][-5:] = pad_token_id
|
|
ctx_context_lengths = seq_len * torch.ones(
|
|
(batch_size), dtype=torch.int32, device='cuda')
|
|
ctx_position_ids = torch.tensor(range(seq_len),
|
|
dtype=torch.int32).reshape([
|
|
1, seq_len
|
|
]).expand([batch_size, seq_len]).cuda()
|
|
ctx_last_token_ids = ctx_context_lengths.clone()
|
|
ctx_attention_mask = _prepare_attention_mask(ctx_ids)
|
|
ctx_host_request_types = torch.tensor([0] * batch_size,
|
|
dtype=torch.int32)
|
|
ctx_sequence_length = torch.tensor([seq_len] * batch_size,
|
|
dtype=torch.int32).cuda()
|
|
ctx_host_past_key_value_lengths = torch.tensor([0] * batch_size,
|
|
dtype=torch.int32)
|
|
host_max_attention_window_sizes = torch.tensor([total_length] *
|
|
bloom_config.n_layer,
|
|
dtype=torch.int32)
|
|
host_sink_token_length = torch.tensor([0], dtype=torch.int32)
|
|
|
|
cache_indirections = [
|
|
torch.full((
|
|
batch_size,
|
|
beam_width,
|
|
total_length,
|
|
),
|
|
0,
|
|
dtype=torch.int32,
|
|
device='cuda'),
|
|
torch.full((
|
|
batch_size,
|
|
beam_width,
|
|
total_length,
|
|
),
|
|
0,
|
|
dtype=torch.int32,
|
|
device='cuda')
|
|
] # ping-pong buffers
|
|
|
|
ctx_buffer = {
|
|
'input_ids': ctx_ids,
|
|
'position_ids': ctx_position_ids,
|
|
'context_lengths': ctx_context_lengths,
|
|
'last_token_ids': ctx_last_token_ids,
|
|
'host_request_types': ctx_host_request_types,
|
|
'cache_indirection': cache_indirections[0],
|
|
}
|
|
|
|
ctx_host_context_lengths = None
|
|
if use_gpt_attention_plugin:
|
|
ctx_buffer['sequence_length'] = ctx_sequence_length
|
|
ctx_buffer[
|
|
'host_past_key_value_lengths'] = ctx_host_past_key_value_lengths
|
|
ctx_buffer['host_sink_token_length'] = host_sink_token_length
|
|
if enable_remove_input_padding:
|
|
ctx_host_context_lengths = ctx_context_lengths.cpu()
|
|
ctx_buffer["host_context_lengths"] = ctx_host_context_lengths
|
|
else:
|
|
ctx_buffer['attention_mask'] = ctx_attention_mask
|
|
|
|
ctx_shape = {k: v.shape for k, v in ctx_buffer.items()}
|
|
|
|
ctx_shape.update(
|
|
{f'host_max_attention_window_sizes': (bloom_config.n_layer, )})
|
|
ctx_buffer.update({
|
|
f'host_max_attention_window_sizes':
|
|
host_max_attention_window_sizes
|
|
})
|
|
|
|
for i in range(bloom_config.n_layer):
|
|
shape = (batch_size, 2, bloom_config.n_head, 0,
|
|
bloom_config.hidden_size // bloom_config.n_head)
|
|
past_buffer = torch.zeros((1, ),
|
|
dtype=str_dtype_to_torch(dtype),
|
|
device='cuda')
|
|
ctx_shape.update({f'past_key_value_{i}': shape})
|
|
shape = (batch_size, 2, bloom_config.n_head, seq_len,
|
|
bloom_config.hidden_size // bloom_config.n_head)
|
|
ctx_buffer.update({
|
|
f'past_key_value_{i}':
|
|
past_buffer,
|
|
f'present_key_value_{i}':
|
|
torch.zeros(shape,
|
|
dtype=str_dtype_to_torch(dtype),
|
|
device='cuda'),
|
|
})
|
|
|
|
context = runtime.ctx_context
|
|
runtime._set_shape(context, ctx_shape)
|
|
runtime._set_buffer(context, ctx_buffer)
|
|
runtime._run(context)
|
|
torch.cuda.synchronize()
|
|
res = ctx_buffer['logits']
|
|
|
|
with torch.no_grad():
|
|
hf_outputs = hf_bloom.forward(ctx_ids,
|
|
attention_mask=ctx_attention_mask)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :]
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
res.cpu().numpy(),
|
|
atol=1e-2)
|
|
|
|
# compare generation
|
|
step = 1
|
|
gen_id = torch.randint(100, (batch_size, 1)).int().cuda()
|
|
gen_context_lengths = ctx_context_lengths.clone()
|
|
gen_host_request_types = torch.tensor([1] * batch_size,
|
|
dtype=torch.int32)
|
|
gen_position_ids = torch.ones_like(gen_id).cuda() * seq_len
|
|
gen_last_token_ids = torch.zeros_like(gen_context_lengths).cuda()
|
|
gen_attention_mask = torch.cat([
|
|
ctx_attention_mask,
|
|
ctx_attention_mask.new_ones((ctx_attention_mask.shape[0], 1))
|
|
],
|
|
dim=-1)
|
|
gen_sequence_length = torch.tensor([seq_len + step] * batch_size,
|
|
dtype=torch.int32).cuda()
|
|
gen_host_past_key_value_lengths = torch.tensor([seq_len + step - 1] *
|
|
batch_size,
|
|
dtype=torch.int32)
|
|
gen_host_sink_token_length = torch.tensor([0], dtype=torch.int32)
|
|
step1_buffer = {
|
|
'input_ids': gen_id,
|
|
'context_lengths': gen_context_lengths.contiguous(),
|
|
'position_ids': gen_position_ids.contiguous(),
|
|
'last_token_ids': gen_last_token_ids.contiguous(),
|
|
'host_request_types': gen_host_request_types.contiguous(),
|
|
'cache_indirection': cache_indirections[1].contiguous(),
|
|
}
|
|
|
|
gen_host_context_lengths = None
|
|
if use_gpt_attention_plugin:
|
|
step1_buffer['sequence_length'] = gen_sequence_length
|
|
step1_buffer[
|
|
'host_past_key_value_lengths'] = gen_host_past_key_value_lengths
|
|
gen_host_context_lengths = gen_context_lengths.cpu()
|
|
step1_buffer['host_context_lengths'] = gen_host_context_lengths
|
|
step1_buffer['host_sink_token_length'] = gen_host_sink_token_length
|
|
else:
|
|
step1_buffer['attention_mask'] = gen_attention_mask
|
|
|
|
step1_shape = {k: v.shape for k, v in step1_buffer.items()}
|
|
|
|
step1_shape.update(
|
|
{f'host_max_attention_window_sizes': (bloom_config.n_layer, )})
|
|
step1_buffer.update({
|
|
f'host_max_attention_window_sizes':
|
|
host_max_attention_window_sizes
|
|
})
|
|
|
|
for i in range(bloom_config.n_layer):
|
|
shape = (batch_size, 2, bloom_config.n_head, seq_len,
|
|
bloom_config.hidden_size // bloom_config.n_head)
|
|
step1_shape.update({f'past_key_value_{i}': shape})
|
|
step1_buffer.update(
|
|
{f'past_key_value_{i}': ctx_buffer[f'present_key_value_{i}']})
|
|
|
|
context = runtime.context_1
|
|
runtime._set_shape(context, step1_shape)
|
|
runtime._set_buffer(context, step1_buffer)
|
|
runtime._run(context)
|
|
torch.cuda.synchronize()
|
|
res = step1_buffer['logits']
|
|
|
|
with torch.no_grad():
|
|
hf_outputs = hf_bloom.forward(
|
|
gen_id,
|
|
attention_mask=gen_attention_mask,
|
|
past_key_values=hf_outputs.past_key_values,
|
|
use_cache=True)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :]
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
res.cpu().numpy(),
|
|
atol=1e-1)
|
|
|
|
@parameterized.expand(load_test_cases(), name_func=unittest_name_func)
|
|
def test_greedy_search(self, use_gpt_attention_plugin, context_fmha_type,
|
|
enable_remove_input_padding, dtype):
|
|
|
|
# Skip tests that are not supported in pre-ampere architecture
|
|
skip_fp32_accum_pre_ampere(context_fmha_type)
|
|
|
|
model = 'bloom'
|
|
log_level = 'error'
|
|
world_size = 1
|
|
rank = 0
|
|
|
|
hidden_act = 'gelu'
|
|
n_layer = 2
|
|
max_new_tokens = 1
|
|
batch_size = 4
|
|
seq_len = 128
|
|
|
|
do_sample = False
|
|
early_stoppping = False
|
|
num_beams = 1
|
|
num_beam_groups = 1
|
|
temperature = 1
|
|
top_k = 0
|
|
top_p = 0.0
|
|
length_penalty = 1
|
|
repetition_penalty = 1
|
|
|
|
bloom_config, hf_bloom = self._gen_hf_bloom(hidden_act, n_layer,
|
|
max_new_tokens, dtype)
|
|
runtime, engine_buffer = self._gen_tensorrt_llm_runtime(
|
|
log_level,
|
|
dtype,
|
|
world_size,
|
|
rank,
|
|
bloom_config,
|
|
hf_bloom,
|
|
model,
|
|
use_gpt_attention_plugin,
|
|
batch_size,
|
|
seq_len,
|
|
max_new_tokens,
|
|
use_refit=False,
|
|
fast_building=True,
|
|
context_fmha_type=context_fmha_type,
|
|
enable_remove_input_padding=enable_remove_input_padding)
|
|
|
|
model_config = ModelConfig(
|
|
max_batch_size=batch_size,
|
|
max_beam_width=num_beams,
|
|
vocab_size=bloom_config.vocab_size,
|
|
num_layers=bloom_config.n_layer,
|
|
num_heads=bloom_config.n_head,
|
|
num_kv_heads=bloom_config.n_head,
|
|
hidden_size=bloom_config.hidden_size,
|
|
gpt_attention_plugin=use_gpt_attention_plugin,
|
|
remove_input_padding=enable_remove_input_padding,
|
|
dtype=dtype)
|
|
|
|
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
|
|
decoder = tensorrt_llm.runtime.GenerationSession(
|
|
model_config, engine_buffer, mapping)
|
|
pad_token_id = 3
|
|
eos_token_id = 2
|
|
sampling_config = SamplingConfig(end_id=eos_token_id,
|
|
pad_id=pad_token_id,
|
|
num_beams=num_beams,
|
|
temperature=temperature,
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
length_penalty=length_penalty,
|
|
repetition_penalty=repetition_penalty)
|
|
input_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
|
|
input_ids[0][-1] = pad_token_id
|
|
input_ids[1][-3:] = pad_token_id
|
|
input_ids[2][-5:] = pad_token_id
|
|
|
|
context_lengths = torch.ones(
|
|
(batch_size)).type(torch.int32).cuda() * seq_len
|
|
|
|
decoder.setup(batch_size,
|
|
max_context_length=seq_len,
|
|
max_new_tokens=max_new_tokens,
|
|
beam_width=num_beams)
|
|
|
|
output_ids = decoder.decode(input_ids, context_lengths, sampling_config)
|
|
# TODO: change to actual ragged tensor after BLOOM plugin supports it
|
|
output_ids_x = decoder.decode(input_ids, context_lengths,
|
|
sampling_config)
|
|
|
|
torch.cuda.synchronize()
|
|
torch.testing.assert_close(output_ids, output_ids_x)
|
|
|
|
res = output_ids.squeeze()
|
|
res = res[:, -max_new_tokens:]
|
|
|
|
ref_output_ids = hf_bloom.generate(
|
|
input_ids,
|
|
do_sample=do_sample,
|
|
early_stopping=early_stoppping,
|
|
num_beams=num_beams,
|
|
temperature=temperature,
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
num_beam_groups=num_beam_groups,
|
|
max_new_tokens=max_new_tokens,
|
|
length_penalty=length_penalty,
|
|
repetition_penalty=repetition_penalty,
|
|
pad_token_id=pad_token_id,
|
|
eos_token_id=eos_token_id)
|
|
torch.cuda.synchronize()
|
|
ref = ref_output_ids[:, -max_new_tokens:]
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(), res.cpu().numpy())
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|