TensorRT-LLMs/tests/model/test_bloom.py
Kaiyu Xie f430a4b447
Update TensorRT-LLM (#1688)
* Update TensorRT-LLM

---------

Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com>
Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com>
Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com>
Co-authored-by: CoderHam <hemant@cohere.com>
Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
2024-05-28 20:07:49 +08:00

503 lines
20 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from itertools import product
import numpy as np
import pytest
# isort: off
import torch
# isort: on
import os
import sys
from parameterized import parameterized
from transformers import BloomConfig, BloomForCausalLM
import tensorrt_llm
from tensorrt_llm import Builder
from tensorrt_llm._utils import str_dtype_to_torch
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
from tensorrt_llm.runtime.generation import _prepare_attention_mask
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
from examples.bloom.convert_checkpoint import convert_hf_bloom
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import skip_fp32_accum_pre_ampere, unittest_name_func
class TestBloom(unittest.TestCase):
def _gen_hf_bloom(self, hidden_act, n_layer, max_length, dtype):
bloom_config = BloomConfig(
hidden_act=hidden_act,
n_layer=n_layer,
max_length=max_length,
torch_dtype=dtype,
)
hf_bloom = BloomForCausalLM(bloom_config).cuda().eval()
return bloom_config, hf_bloom
def _gen_tensorrt_llm_network(self, network, builder, hf_bloom,
bloom_config, batch_size, input_len,
output_len, fp16, gpt_attention_plugin,
tensor_parallel,
apply_query_key_layer_scaling):
dtype = 'float16' if fp16 else 'float32'
config = {
'architecture': 'BloomForCausalLM',
'dtype': dtype,
'num_hidden_layers': bloom_config.n_layer,
'num_attention_heads': bloom_config.n_head,
'hidden_size': bloom_config.hidden_size,
'vocab_size': bloom_config.vocab_size,
'position_embedding_type': 'alibi',
'max_position_embeddings': input_len + output_len,
'hidden_act': 'gelu',
'mapping': {
'world_size': tensor_parallel,
'tp_size': tensor_parallel
},
'use_parallel_embedding': False,
'embedding_sharding_dim': 0,
'share_embedding_table': False,
}
config = tensorrt_llm.models.PretrainedConfig.from_dict(config)
# config.set_rank(rank)
weights = convert_hf_bloom(hf_bloom,
tensor_parallel=tensor_parallel,
dtype=dtype)
tensorrt_llm_bloom = tensorrt_llm.models.BloomForCausalLM(config)
tensorrt_llm_bloom.load(weights)
with net_guard(network):
network.set_named_parameters(tensorrt_llm_bloom.named_parameters())
inputs = tensorrt_llm_bloom.prepare_inputs(
max_batch_size=batch_size,
max_input_len=input_len,
max_seq_len=input_len + output_len,
use_cache=True,
max_beam_width=1)
# Prepare
tensorrt_llm_bloom(**inputs)
return network
def _gen_tensorrt_llm_runtime(self,
log_level,
dtype,
world_size,
rank,
bloom_config,
hf_bloom,
model,
use_plugin,
batch_size,
input_len,
output_len,
use_refit,
fast_building=False,
apply_query_key_layer_scaling=False,
context_fmha_type=ContextFMHAType.disabled,
enable_remove_input_padding=False):
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
runtime = None
builder = Builder()
fp16 = (dtype == 'float16')
with tempfile.TemporaryDirectory() as tmpdirname:
builder_config = builder.create_builder_config(
name='bloom',
precision=dtype,
timing_cache='model.cache',
tensor_parallel=world_size, # TP only
use_refit=use_refit,
strongly_typed=fp16,
)
network = builder.create_network()
network.plugin_config.to_legacy_setting()
if use_plugin:
network.plugin_config.gpt_attention_plugin = dtype
if fast_building:
network.plugin_config.gemm_plugin = dtype
network.plugin_config.set_context_fmha(context_fmha_type)
if enable_remove_input_padding:
network.plugin_config.remove_input_padding = True
self._gen_tensorrt_llm_network(network, builder, hf_bloom,
bloom_config, batch_size, input_len,
output_len, fp16, use_plugin,
world_size,
apply_query_key_layer_scaling)
engine_buffer = builder.build_engine(network, builder_config)
runtime = tensorrt_llm.runtime.generation._Runtime(
engine_buffer, mapping)
return runtime, engine_buffer
def load_test_cases():
test_cases = list(
product([False, True], [
ContextFMHAType.disabled, ContextFMHAType.enabled,
ContextFMHAType.enabled_with_fp32_acc
], [False], ['float16', 'float32']))
return test_cases
@parameterized.expand(load_test_cases(), name_func=unittest_name_func)
def test_bloom(self, use_gpt_attention_plugin, context_fmha_type,
enable_remove_input_padding, dtype):
model = 'bloom'
log_level = 'error'
world_size = 1
rank = 0
hidden_act = 'gelu'
n_layer = 2
max_length = 2
batch_size = 4
beam_width = 1
seq_len = 128
total_length = seq_len + max_length
bloom_config, hf_bloom = self._gen_hf_bloom(hidden_act, n_layer,
max_length, dtype)
if bloom_config.hidden_size // bloom_config.n_head < 32 and use_gpt_attention_plugin:
pytest.skip("unsupported head_size")
runtime, _ = self._gen_tensorrt_llm_runtime(
log_level,
dtype,
world_size,
rank,
bloom_config,
hf_bloom,
model,
use_gpt_attention_plugin,
batch_size,
seq_len,
max_length,
use_refit=False,
fast_building=True,
context_fmha_type=context_fmha_type,
enable_remove_input_padding=enable_remove_input_padding)
# compare context
pad_token_id = 3
ctx_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
ctx_ids[0][-1] = pad_token_id
ctx_ids[1][-3:] = pad_token_id
ctx_ids[2][-5:] = pad_token_id
ctx_context_lengths = seq_len * torch.ones(
(batch_size), dtype=torch.int32, device='cuda')
ctx_position_ids = torch.tensor(range(seq_len),
dtype=torch.int32).reshape([
1, seq_len
]).expand([batch_size, seq_len]).cuda()
ctx_last_token_ids = ctx_context_lengths.clone()
ctx_attention_mask = _prepare_attention_mask(ctx_ids)
ctx_host_request_types = torch.tensor([0] * batch_size,
dtype=torch.int32)
ctx_sequence_length = torch.tensor([seq_len] * batch_size,
dtype=torch.int32).cuda()
ctx_host_past_key_value_lengths = torch.tensor([0] * batch_size,
dtype=torch.int32)
host_max_attention_window_sizes = torch.tensor([total_length] *
bloom_config.n_layer,
dtype=torch.int32)
host_sink_token_length = torch.tensor([0], dtype=torch.int32)
cache_indirections = [
torch.full((
batch_size,
beam_width,
total_length,
),
0,
dtype=torch.int32,
device='cuda'),
torch.full((
batch_size,
beam_width,
total_length,
),
0,
dtype=torch.int32,
device='cuda')
] # ping-pong buffers
ctx_buffer = {
'input_ids': ctx_ids,
'position_ids': ctx_position_ids,
'context_lengths': ctx_context_lengths,
'last_token_ids': ctx_last_token_ids,
'host_request_types': ctx_host_request_types,
'cache_indirection': cache_indirections[0],
}
ctx_host_context_lengths = None
if use_gpt_attention_plugin:
ctx_buffer['sequence_length'] = ctx_sequence_length
ctx_buffer[
'host_past_key_value_lengths'] = ctx_host_past_key_value_lengths
ctx_buffer['host_sink_token_length'] = host_sink_token_length
if enable_remove_input_padding:
ctx_host_context_lengths = ctx_context_lengths.cpu()
ctx_buffer["host_context_lengths"] = ctx_host_context_lengths
else:
ctx_buffer['attention_mask'] = ctx_attention_mask
ctx_shape = {k: v.shape for k, v in ctx_buffer.items()}
ctx_shape.update(
{f'host_max_attention_window_sizes': (bloom_config.n_layer, )})
ctx_buffer.update({
f'host_max_attention_window_sizes':
host_max_attention_window_sizes
})
for i in range(bloom_config.n_layer):
shape = (batch_size, 2, bloom_config.n_head, 0,
bloom_config.hidden_size // bloom_config.n_head)
past_buffer = torch.zeros((1, ),
dtype=str_dtype_to_torch(dtype),
device='cuda')
ctx_shape.update({f'past_key_value_{i}': shape})
shape = (batch_size, 2, bloom_config.n_head, seq_len,
bloom_config.hidden_size // bloom_config.n_head)
ctx_buffer.update({
f'past_key_value_{i}':
past_buffer,
f'present_key_value_{i}':
torch.zeros(shape,
dtype=str_dtype_to_torch(dtype),
device='cuda'),
})
context = runtime.ctx_context
runtime._set_shape(context, ctx_shape)
runtime._set_buffer(context, ctx_buffer)
runtime._run(context)
torch.cuda.synchronize()
res = ctx_buffer['logits']
with torch.no_grad():
hf_outputs = hf_bloom.forward(ctx_ids,
attention_mask=ctx_attention_mask)
torch.cuda.synchronize()
ref = hf_outputs.logits[:, -1, :]
np.testing.assert_allclose(ref.cpu().numpy(),
res.cpu().numpy(),
atol=1e-2)
# compare generation
step = 1
gen_id = torch.randint(100, (batch_size, 1)).int().cuda()
gen_context_lengths = ctx_context_lengths.clone()
gen_host_request_types = torch.tensor([1] * batch_size,
dtype=torch.int32)
gen_position_ids = torch.ones_like(gen_id).cuda() * seq_len
gen_last_token_ids = torch.zeros_like(gen_context_lengths).cuda()
gen_attention_mask = torch.cat([
ctx_attention_mask,
ctx_attention_mask.new_ones((ctx_attention_mask.shape[0], 1))
],
dim=-1)
gen_sequence_length = torch.tensor([seq_len + step] * batch_size,
dtype=torch.int32).cuda()
gen_host_past_key_value_lengths = torch.tensor([seq_len + step - 1] *
batch_size,
dtype=torch.int32)
gen_host_sink_token_length = torch.tensor([0], dtype=torch.int32)
step1_buffer = {
'input_ids': gen_id,
'context_lengths': gen_context_lengths.contiguous(),
'position_ids': gen_position_ids.contiguous(),
'last_token_ids': gen_last_token_ids.contiguous(),
'host_request_types': gen_host_request_types.contiguous(),
'cache_indirection': cache_indirections[1].contiguous(),
}
gen_host_context_lengths = None
if use_gpt_attention_plugin:
step1_buffer['sequence_length'] = gen_sequence_length
step1_buffer[
'host_past_key_value_lengths'] = gen_host_past_key_value_lengths
gen_host_context_lengths = gen_context_lengths.cpu()
step1_buffer['host_context_lengths'] = gen_host_context_lengths
step1_buffer['host_sink_token_length'] = gen_host_sink_token_length
else:
step1_buffer['attention_mask'] = gen_attention_mask
step1_shape = {k: v.shape for k, v in step1_buffer.items()}
step1_shape.update(
{f'host_max_attention_window_sizes': (bloom_config.n_layer, )})
step1_buffer.update({
f'host_max_attention_window_sizes':
host_max_attention_window_sizes
})
for i in range(bloom_config.n_layer):
shape = (batch_size, 2, bloom_config.n_head, seq_len,
bloom_config.hidden_size // bloom_config.n_head)
step1_shape.update({f'past_key_value_{i}': shape})
step1_buffer.update(
{f'past_key_value_{i}': ctx_buffer[f'present_key_value_{i}']})
context = runtime.context_1
runtime._set_shape(context, step1_shape)
runtime._set_buffer(context, step1_buffer)
runtime._run(context)
torch.cuda.synchronize()
res = step1_buffer['logits']
with torch.no_grad():
hf_outputs = hf_bloom.forward(
gen_id,
attention_mask=gen_attention_mask,
past_key_values=hf_outputs.past_key_values,
use_cache=True)
torch.cuda.synchronize()
ref = hf_outputs.logits[:, -1, :]
np.testing.assert_allclose(ref.cpu().numpy(),
res.cpu().numpy(),
atol=1e-1)
@parameterized.expand(load_test_cases(), name_func=unittest_name_func)
def test_greedy_search(self, use_gpt_attention_plugin, context_fmha_type,
enable_remove_input_padding, dtype):
# Skip tests that are not supported in pre-ampere architecture
skip_fp32_accum_pre_ampere(context_fmha_type)
model = 'bloom'
log_level = 'error'
world_size = 1
rank = 0
hidden_act = 'gelu'
n_layer = 2
max_new_tokens = 1
batch_size = 4
seq_len = 128
do_sample = False
early_stoppping = False
num_beams = 1
num_beam_groups = 1
temperature = 1
top_k = 0
top_p = 0.0
length_penalty = 1
repetition_penalty = 1
bloom_config, hf_bloom = self._gen_hf_bloom(hidden_act, n_layer,
max_new_tokens, dtype)
runtime, engine_buffer = self._gen_tensorrt_llm_runtime(
log_level,
dtype,
world_size,
rank,
bloom_config,
hf_bloom,
model,
use_gpt_attention_plugin,
batch_size,
seq_len,
max_new_tokens,
use_refit=False,
fast_building=True,
context_fmha_type=context_fmha_type,
enable_remove_input_padding=enable_remove_input_padding)
model_config = ModelConfig(
max_batch_size=batch_size,
max_beam_width=num_beams,
vocab_size=bloom_config.vocab_size,
num_layers=bloom_config.n_layer,
num_heads=bloom_config.n_head,
num_kv_heads=bloom_config.n_head,
hidden_size=bloom_config.hidden_size,
gpt_attention_plugin=use_gpt_attention_plugin,
remove_input_padding=enable_remove_input_padding,
dtype=dtype)
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
decoder = tensorrt_llm.runtime.GenerationSession(
model_config, engine_buffer, mapping)
pad_token_id = 3
eos_token_id = 2
sampling_config = SamplingConfig(end_id=eos_token_id,
pad_id=pad_token_id,
num_beams=num_beams,
temperature=temperature,
top_k=top_k,
top_p=top_p,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty)
input_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
input_ids[0][-1] = pad_token_id
input_ids[1][-3:] = pad_token_id
input_ids[2][-5:] = pad_token_id
context_lengths = torch.ones(
(batch_size)).type(torch.int32).cuda() * seq_len
decoder.setup(batch_size,
max_context_length=seq_len,
max_new_tokens=max_new_tokens,
beam_width=num_beams)
output_ids = decoder.decode(input_ids, context_lengths, sampling_config)
# TODO: change to actual ragged tensor after BLOOM plugin supports it
output_ids_x = decoder.decode(input_ids, context_lengths,
sampling_config)
torch.cuda.synchronize()
torch.testing.assert_close(output_ids, output_ids_x)
res = output_ids.squeeze()
res = res[:, -max_new_tokens:]
ref_output_ids = hf_bloom.generate(
input_ids,
do_sample=do_sample,
early_stopping=early_stoppping,
num_beams=num_beams,
temperature=temperature,
top_k=top_k,
top_p=top_p,
num_beam_groups=num_beam_groups,
max_new_tokens=max_new_tokens,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id)
torch.cuda.synchronize()
ref = ref_output_ids[:, -max_new_tokens:]
np.testing.assert_allclose(ref.cpu().numpy(), res.cpu().numpy())
if __name__ == '__main__':
unittest.main()