mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-02-04 02:02:01 +08:00
* Move TRT-LLM backend repo to TRT-LLM repo Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> * Address review comments Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> * debug ci Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> * Update triton backend Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> * Fixes after update Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> --------- Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>
120 lines
4.9 KiB
Python
120 lines
4.9 KiB
Python
# -*- coding: utf-8 -*-
|
|
import json
|
|
|
|
import numpy as np
|
|
import triton_python_backend_utils as pb_utils
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
class TritonPythonModel:
|
|
"""Your Python model must use the same class name. Every Python model
|
|
that is created must have "TritonPythonModel" as the class name.
|
|
"""
|
|
|
|
def initialize(self, args):
|
|
"""`initialize` is called only once when the model is being loaded.
|
|
Implementing `initialize` function is optional. This function allows
|
|
the model to initialize any state associated with this model.
|
|
Parameters
|
|
----------
|
|
args : dict
|
|
Both keys and values are strings. The dictionary keys and values are:
|
|
* model_config: A JSON string containing the model configuration
|
|
* model_instance_kind: A string containing model instance kind
|
|
* model_instance_device_id: A string containing model instance device ID
|
|
* model_repository: Model repository path
|
|
* model_version: Model version
|
|
* model_name: Model name
|
|
"""
|
|
# Parse model configs
|
|
model_config = json.loads(args['model_config'])
|
|
tokenizer_dir = model_config['parameters']['tokenizer_dir'][
|
|
'string_value']
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir,
|
|
legacy=False,
|
|
padding_side="left",
|
|
trust_remote_code=True)
|
|
if not self.tokenizer.pad_token:
|
|
self.tokenizer.pad_token = self.tokenizer.eos_token
|
|
|
|
# Parse model output configs
|
|
output_config = pb_utils.get_output_config_by_name(
|
|
model_config, "OUTPUT")
|
|
|
|
# Convert Triton types to numpy types
|
|
self.output_dtype = pb_utils.triton_string_to_numpy(
|
|
output_config['data_type'])
|
|
|
|
def execute(self, requests):
|
|
"""`execute` must be implemented in every Python model. `execute`
|
|
function receives a list of pb_utils.InferenceRequest as the only
|
|
argument. This function is called when an inference is requested
|
|
for this model. Depending on the batching configuration (e.g. Dynamic
|
|
Batching) used, `requests` may contain multiple requests. Every
|
|
Python model, must create one pb_utils.InferenceResponse for every
|
|
pb_utils.InferenceRequest in `requests`. If there is an error, you can
|
|
set the error argument when creating a pb_utils.InferenceResponse.
|
|
Parameters
|
|
----------
|
|
requests : list
|
|
A list of pb_utils.InferenceRequest
|
|
Returns
|
|
-------
|
|
list
|
|
A list of pb_utils.InferenceResponse. The length of this list must
|
|
be the same as `requests`
|
|
"""
|
|
|
|
responses = []
|
|
|
|
# Every Python backend must iterate over everyone of the requests
|
|
# and create a pb_utils.InferenceResponse for each of them.
|
|
for idx, request in enumerate(requests):
|
|
# Get input tensors
|
|
tokens_batch = pb_utils.get_input_tensor_by_name(
|
|
request, 'TOKENS_BATCH').as_numpy()
|
|
|
|
# Reshape Input
|
|
# tokens_batch = tokens_batch.reshape([-1, tokens_batch.shape[0]])
|
|
# tokens_batch = tokens_batch.T
|
|
|
|
# Postprocessing output data.
|
|
outputs = self._postprocessing(tokens_batch)
|
|
|
|
# Create output tensors. You need pb_utils.Tensor
|
|
# objects to create pb_utils.InferenceResponse.
|
|
output_tensor = pb_utils.Tensor(
|
|
'OUTPUT',
|
|
np.array(outputs).astype(self.output_dtype))
|
|
|
|
# Create InferenceResponse. You can set an error here in case
|
|
# there was a problem with handling this inference request.
|
|
# Below is an example of how you can set errors in inference
|
|
# response:
|
|
#
|
|
# pb_utils.InferenceResponse(
|
|
# output_tensors=..., TritonError("An error occurred"))
|
|
inference_response = pb_utils.InferenceResponse(
|
|
output_tensors=[output_tensor])
|
|
responses.append(inference_response)
|
|
|
|
# You should return a list of pb_utils.InferenceResponse. Length
|
|
# of this list must match the length of `requests` list.
|
|
return responses
|
|
|
|
def finalize(self):
|
|
"""`finalize` is called only once when the model is being unloaded.
|
|
Implementing `finalize` function is optional. This function allows
|
|
the model to perform any necessary clean ups before exit.
|
|
"""
|
|
print('Cleaning up...')
|
|
|
|
def _postprocessing(self, tokens_batch):
|
|
outputs = []
|
|
for beam_tokens in tokens_batch:
|
|
for tokens in beam_tokens:
|
|
output = self.tokenizer.decode(tokens)
|
|
outputs.append(output.encode('utf8'))
|
|
return outputs
|