TensorRT-LLMs/tests/model/test_gptj.py
Kaiyu Xie f7eca56161
Update TensorRT-LLM (#613)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
Co-authored-by: zhang-ge-hao <842720660@qq.com>
2023-12-08 17:49:24 +08:00

471 lines
19 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import tempfile
import unittest
from itertools import product
import numpy as np
import pytest
# isort: off
import torch
import tensorrt as trt
# isort: on
from parameterized import parameterized
from transformers import GPTJConfig, GPTJForCausalLM
import tensorrt_llm
from tensorrt_llm import Builder
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
from examples.gptj.weight import load_from_hf_gpt_j
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import getSMVersion
class TestGPTJ(unittest.TestCase):
def _gen_hf_gpt_j(self, hidden_act, n_layer, max_length, dtype):
gpt_config = GPTJConfig(activation_function=hidden_act,
n_layer=n_layer,
max_length=max_length,
torch_dtype=dtype,
n_embd=4096,
n_head=16,
rotary_dim=64)
hf_gpt = GPTJForCausalLM(gpt_config).cuda().to(
tensorrt_llm._utils.str_dtype_to_torch(dtype)).eval()
return gpt_config, hf_gpt
def _gen_tensorrt_llm_network(self, network, hf_gpt, gpt_config, batch_size,
beam_width, input_len, output_len, fp16,
tensor_parallel):
num_layers = gpt_config.n_layer
num_heads = gpt_config.n_head
hidden_size = gpt_config.n_embd
vocab_size = gpt_config.vocab_size
hidden_act = gpt_config.activation_function
n_positions = gpt_config.n_positions
rotary_dim = gpt_config.rotary_dim
with net_guard(network):
kv_dtype = trt.float16 if fp16 else trt.float32
# Initialize model
tensorrt_llm_gpt = tensorrt_llm.models.GPTJForCausalLM(
num_layers=num_layers,
num_heads=num_heads,
hidden_size=hidden_size,
vocab_size=vocab_size,
hidden_act=hidden_act,
max_position_embeddings=n_positions,
rotary_dim=rotary_dim,
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(world_size=tensor_parallel,
tp_size=tensor_parallel),
)
inputs = tensorrt_llm_gpt.prepare_inputs(batch_size,
input_len,
output_len,
use_cache=True,
max_beam_width=beam_width)
load_from_hf_gpt_j(tensorrt_llm_gpt, hf_gpt, fp16=fp16)
# Prepare
network.set_named_parameters(tensorrt_llm_gpt.named_parameters())
tensorrt_llm_gpt(*inputs)
return network
def _gen_tensorrt_llm_runtime(self,
dtype,
world_size,
rank,
gpt_config,
hf_gpt,
use_attention_plugin,
batch_size,
beam_width,
input_len,
output_len,
use_refit,
use_ln_gemm_plugin,
context_fmha_flag=ContextFMHAType.disabled,
enable_remove_input_padding=False):
tensorrt_llm.logger.set_level('error')
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
runtime = None
builder = Builder()
fp16 = (dtype == 'float16')
with tempfile.TemporaryDirectory() as tmpdirname:
builder_config = builder.create_builder_config(
name='gptj',
precision=dtype,
timing_cache='model.cache',
tensor_parallel=world_size, # TP only
use_refit=use_refit,
strongly_typed=fp16,
)
network = builder.create_network()
if use_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(dtype)
if use_ln_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype)
if enable_remove_input_padding:
network.plugin_config.enable_remove_input_padding()
network.plugin_config.set_context_fmha(context_fmha_flag)
self._gen_tensorrt_llm_network(network, hf_gpt, gpt_config,
batch_size, beam_width, input_len,
output_len, fp16, world_size)
engine_buffer = builder.build_engine(network, builder_config)
assert engine_buffer is not None
runtime = tensorrt_llm.runtime.generation._Runtime(
engine_buffer, mapping)
ok = builder.save_timing_cache(builder_config, 'model.cache')
assert ok, "Failed to save timing cache."
return runtime, engine_buffer
def load_test_cases():
test_cases = list(
product([
ContextFMHAType.disabled, ContextFMHAType.enabled,
ContextFMHAType.enabled_with_fp32_acc
], [False, True]))
return test_cases
@parameterized.expand(load_test_cases)
def test_gptj_plugin(self, context_fmha_flag, enable_remove_input_padding):
# Skip tests that are not supported in pre-ampere architecture
if getSMVersion() < 80:
if context_fmha_flag == ContextFMHAType.enabled:
pytest.skip(
"ContextFMHAType is not supported in pre-ampere architecture"
)
elif context_fmha_flag == ContextFMHAType.enabled_with_fp32_acc:
pytest.skip(
"ContextFMHAType with fp32 acc is not supported in pre-ampere architecture"
)
torch.random.manual_seed(0)
use_refit = False
dtype = 'float16'
world_size = 1
rank = 0
hidden_act = 'gelu'
n_layer = 2
max_length = 2
batch_size = 1
beam_width = 1
seq_len = 12
total_seq_len = max_length + seq_len
use_attention_plugin = True
use_ln_gemm_plugin = True
gpt_config, hf_gpt = self._gen_hf_gpt_j(hidden_act, n_layer,
seq_len + max_length, dtype)
runtime, _ = self._gen_tensorrt_llm_runtime(
dtype,
world_size,
rank,
gpt_config,
hf_gpt,
use_attention_plugin,
batch_size,
beam_width,
seq_len,
max_length,
use_refit,
use_ln_gemm_plugin,
context_fmha_flag,
enable_remove_input_padding=enable_remove_input_padding)
key_value_cache_buffers = []
head_size = gpt_config.n_embd // gpt_config.n_head
for i in range(gpt_config.n_layer):
key_value_cache_buffers.append(
torch.zeros((
batch_size,
2,
gpt_config.n_head,
total_seq_len,
head_size,
),
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device='cuda'))
def run_engine(context,
input_ids,
context_lengths,
host_request_types,
position_ids,
last_token_ids,
cache_indirection,
host_past_key_value_lengths,
host_max_attention_window_sizes,
sequence_length,
host_context_lengths=None):
ctx_buffer = {
'input_ids': input_ids,
'context_lengths': context_lengths,
'host_request_types': host_request_types,
'position_ids': position_ids,
'last_token_ids': last_token_ids,
'cache_indirection': cache_indirection,
'host_past_key_value_lengths': host_past_key_value_lengths,
'sequence_length': sequence_length,
}
for i in range(gpt_config.n_layer):
ctx_buffer[f'past_key_value_{i}'] = key_value_cache_buffers[i]
ctx_buffer[
f'host_max_attention_window_size_{i}'] = host_max_attention_window_sizes
ctx_buffer[f'present_key_value_{i}'] = key_value_cache_buffers[
i]
if enable_remove_input_padding:
assert host_context_lengths is not None, "host_context_lengths is required for ragged input"
ctx_buffer['host_context_lengths'] = host_context_lengths
ctx_shape = {
key: buffer.shape
for key, buffer in ctx_buffer.items()
}
runtime._set_shape(context, ctx_shape)
runtime._set_buffer(context, ctx_buffer)
runtime._run(context)
torch.cuda.synchronize()
res = ctx_buffer['logits']
return res
cache_indirections = [
torch.full((
batch_size,
beam_width,
total_seq_len,
),
0,
dtype=torch.int32,
device='cuda'),
torch.full((
batch_size,
beam_width,
total_seq_len,
),
0,
dtype=torch.int32,
device='cuda')
] # ping-pong buffers
ctx_context_lengths = seq_len * torch.ones(
(batch_size), dtype=torch.int32, device='cuda')
# We need sequence_lengths start as context_lengths, and are added one in each step.
sequence_length_buffer = ctx_context_lengths.detach().clone()
hf_outputs = None
def compare_context():
ctx_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
with torch.no_grad():
nonlocal hf_outputs
hf_outputs = hf_gpt.forward(ctx_ids, use_cache=True)
torch.cuda.synchronize()
ref = hf_outputs.logits[:, -1, :]
ctx_position_ids = torch.tensor(range(seq_len),
dtype=torch.int32).reshape([
1, seq_len
]).expand([batch_size,
seq_len]).cuda()
ctx_last_token_ids = ctx_context_lengths.clone()
if enable_remove_input_padding:
ctx_ids = ctx_ids.view([1, batch_size * seq_len])
ctx_position_ids = ctx_position_ids.view(
[1, batch_size * seq_len])
ctx_last_token_ids = torch.cumsum(ctx_last_token_ids,
dim=0).int()
host_request_types = torch.tensor([0 for i in range(batch_size)],
dtype=torch.int32).cpu()
host_past_key_value_lengths = torch.tensor([0] * batch_size,
dtype=torch.int32)
host_max_attention_window_sizes = torch.tensor([total_seq_len],
dtype=torch.int32)
host_context_lengths = ctx_context_lengths.cpu(
) if enable_remove_input_padding else None
res = run_engine(
context=runtime.ctx_context,
input_ids=ctx_ids,
context_lengths=ctx_context_lengths,
position_ids=ctx_position_ids,
last_token_ids=ctx_last_token_ids,
cache_indirection=cache_indirections[0],
host_past_key_value_lengths=host_past_key_value_lengths,
host_max_attention_window_sizes=host_max_attention_window_sizes,
sequence_length=sequence_length_buffer,
host_context_lengths=host_context_lengths,
host_request_types=host_request_types)
np.testing.assert_allclose(ref.cpu().numpy(),
res.cpu().numpy(),
atol=1e-1)
v_inner = 16 // (2 if dtype == 'float16' else 4)
for i in range(gpt_config.n_layer):
res_present_key_value = key_value_cache_buffers[i]
past_key_value_tensor = res_present_key_value.permute(
1, 0, 2, 3, 4)
key, value = past_key_value_tensor.chunk(2)
# TRT-LLM has the same cache layout for key and value:
# [bs, n_head, max_seq_len, head_size]
head_size = gpt_config.n_embd // gpt_config.n_head
key = key.reshape(batch_size, gpt_config.n_head, total_seq_len,
head_size)
value = value.reshape(batch_size, gpt_config.n_head,
total_seq_len, head_size)
ref_present_key, ref_present_value = hf_outputs.past_key_values[
i]
np.testing.assert_allclose(ref_present_key.cpu().numpy(),
key[:, :, :seq_len, :].cpu().numpy(),
atol=1e-1)
np.testing.assert_allclose(
ref_present_value.cpu().numpy(),
value[:, :, :seq_len, :].cpu().numpy(),
atol=1e-1)
def compare_generation():
step1_id = torch.randint(100, (batch_size, 1)).int().cuda()
gen_position_ids = torch.ones_like(step1_id).int().cuda() * seq_len
gen_context_lengths = ctx_context_lengths.clone()
gen_last_token_ids = torch.zeros_like(
gen_context_lengths).int().cuda()
with torch.no_grad():
nonlocal hf_outputs
hf_outputs = hf_gpt.forward(
step1_id,
past_key_values=hf_outputs.past_key_values,
position_ids=gen_position_ids,
use_cache=True)
torch.cuda.synchronize()
ref = hf_outputs.logits[:, -1, :]
if enable_remove_input_padding:
step1_id = step1_id.view([1, batch_size])
gen_position_ids = gen_position_ids.view([1, batch_size])
gen_last_token_ids = torch.ones_like(
gen_context_lengths).int().cuda()
gen_last_token_ids = torch.cumsum(gen_last_token_ids,
dim=0).int()
host_past_key_value_lengths = torch.tensor([seq_len] * batch_size,
dtype=torch.int32)
host_max_attention_window_sizes = torch.tensor([total_seq_len],
dtype=torch.int32)
host_request_types = torch.tensor([1] * batch_size,
dtype=torch.int32).cpu()
host_context_lengths = gen_context_lengths.cpu(
) if enable_remove_input_padding else None
# For step 1, the sequence_lengths = context_lengths + 1.
sequence_length_buffer = torch.add(ctx_context_lengths, 1)
res = run_engine(
context=runtime.context_1,
input_ids=step1_id,
# note we should pass context length for generation phase.
context_lengths=ctx_context_lengths,
position_ids=gen_position_ids,
last_token_ids=gen_last_token_ids,
cache_indirection=cache_indirections[1],
host_past_key_value_lengths=host_past_key_value_lengths,
host_max_attention_window_sizes=host_max_attention_window_sizes,
sequence_length=sequence_length_buffer,
host_context_lengths=host_context_lengths,
host_request_types=host_request_types)
np.testing.assert_allclose(ref.cpu().numpy(),
res.cpu().numpy(),
atol=1e-1)
compare_context()
compare_generation()
def test_gptj_noplugin_supported(self):
use_refit = False
dtype = 'float16'
world_size = 1
rank = 0
hidden_act = 'gelu'
n_layer = 1
max_length = 2
batch_size = 4
seq_len = 128
use_attention_plugin = False
use_ln_gemm_plugin = True
beam_width = 1
gpt_config, hf_gpt = self._gen_hf_gpt_j(hidden_act, n_layer,
seq_len + max_length, dtype)
runtime, _ = self._gen_tensorrt_llm_runtime(
dtype, world_size, rank, gpt_config, hf_gpt, use_attention_plugin,
batch_size, beam_width, seq_len, max_length, use_refit,
use_ln_gemm_plugin)
use_ln_gemm_plugin = False
if trt.__version__[:3] == '8.6':
with self.assertRaisesRegex(
AssertionError,
"You need to enable the LayerNorm plugin for GPT-J with TensorRT"
):
runtime, _ = self._gen_tensorrt_llm_runtime(
dtype, world_size, rank, gpt_config, hf_gpt,
use_attention_plugin, batch_size, beam_width, seq_len,
max_length, use_refit, use_ln_gemm_plugin)
if __name__ == '__main__':
unittest.main()