mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com> Co-authored-by: zhang-ge-hao <842720660@qq.com>
471 lines
19 KiB
Python
471 lines
19 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
# isort: off
|
|
import torch
|
|
import tensorrt as trt
|
|
# isort: on
|
|
from parameterized import parameterized
|
|
from transformers import GPTJConfig, GPTJForCausalLM
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Builder
|
|
from tensorrt_llm.network import net_guard
|
|
from tensorrt_llm.plugin.plugin import ContextFMHAType
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
|
|
from examples.gptj.weight import load_from_hf_gpt_j
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import getSMVersion
|
|
|
|
|
|
class TestGPTJ(unittest.TestCase):
|
|
|
|
def _gen_hf_gpt_j(self, hidden_act, n_layer, max_length, dtype):
|
|
gpt_config = GPTJConfig(activation_function=hidden_act,
|
|
n_layer=n_layer,
|
|
max_length=max_length,
|
|
torch_dtype=dtype,
|
|
n_embd=4096,
|
|
n_head=16,
|
|
rotary_dim=64)
|
|
hf_gpt = GPTJForCausalLM(gpt_config).cuda().to(
|
|
tensorrt_llm._utils.str_dtype_to_torch(dtype)).eval()
|
|
return gpt_config, hf_gpt
|
|
|
|
def _gen_tensorrt_llm_network(self, network, hf_gpt, gpt_config, batch_size,
|
|
beam_width, input_len, output_len, fp16,
|
|
tensor_parallel):
|
|
num_layers = gpt_config.n_layer
|
|
num_heads = gpt_config.n_head
|
|
hidden_size = gpt_config.n_embd
|
|
vocab_size = gpt_config.vocab_size
|
|
hidden_act = gpt_config.activation_function
|
|
n_positions = gpt_config.n_positions
|
|
rotary_dim = gpt_config.rotary_dim
|
|
|
|
with net_guard(network):
|
|
kv_dtype = trt.float16 if fp16 else trt.float32
|
|
# Initialize model
|
|
tensorrt_llm_gpt = tensorrt_llm.models.GPTJForCausalLM(
|
|
num_layers=num_layers,
|
|
num_heads=num_heads,
|
|
hidden_size=hidden_size,
|
|
vocab_size=vocab_size,
|
|
hidden_act=hidden_act,
|
|
max_position_embeddings=n_positions,
|
|
rotary_dim=rotary_dim,
|
|
dtype=kv_dtype,
|
|
mapping=tensorrt_llm.Mapping(world_size=tensor_parallel,
|
|
tp_size=tensor_parallel),
|
|
)
|
|
inputs = tensorrt_llm_gpt.prepare_inputs(batch_size,
|
|
input_len,
|
|
output_len,
|
|
use_cache=True,
|
|
max_beam_width=beam_width)
|
|
load_from_hf_gpt_j(tensorrt_llm_gpt, hf_gpt, fp16=fp16)
|
|
|
|
# Prepare
|
|
network.set_named_parameters(tensorrt_llm_gpt.named_parameters())
|
|
|
|
tensorrt_llm_gpt(*inputs)
|
|
|
|
return network
|
|
|
|
def _gen_tensorrt_llm_runtime(self,
|
|
dtype,
|
|
world_size,
|
|
rank,
|
|
gpt_config,
|
|
hf_gpt,
|
|
use_attention_plugin,
|
|
batch_size,
|
|
beam_width,
|
|
input_len,
|
|
output_len,
|
|
use_refit,
|
|
use_ln_gemm_plugin,
|
|
context_fmha_flag=ContextFMHAType.disabled,
|
|
enable_remove_input_padding=False):
|
|
tensorrt_llm.logger.set_level('error')
|
|
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
|
|
|
|
runtime = None
|
|
builder = Builder()
|
|
fp16 = (dtype == 'float16')
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
|
|
builder_config = builder.create_builder_config(
|
|
name='gptj',
|
|
precision=dtype,
|
|
timing_cache='model.cache',
|
|
tensor_parallel=world_size, # TP only
|
|
use_refit=use_refit,
|
|
strongly_typed=fp16,
|
|
)
|
|
network = builder.create_network()
|
|
if use_attention_plugin:
|
|
network.plugin_config.set_gpt_attention_plugin(dtype)
|
|
if use_ln_gemm_plugin:
|
|
network.plugin_config.set_gemm_plugin(dtype)
|
|
if enable_remove_input_padding:
|
|
network.plugin_config.enable_remove_input_padding()
|
|
network.plugin_config.set_context_fmha(context_fmha_flag)
|
|
|
|
self._gen_tensorrt_llm_network(network, hf_gpt, gpt_config,
|
|
batch_size, beam_width, input_len,
|
|
output_len, fp16, world_size)
|
|
|
|
engine_buffer = builder.build_engine(network, builder_config)
|
|
assert engine_buffer is not None
|
|
runtime = tensorrt_llm.runtime.generation._Runtime(
|
|
engine_buffer, mapping)
|
|
|
|
ok = builder.save_timing_cache(builder_config, 'model.cache')
|
|
assert ok, "Failed to save timing cache."
|
|
|
|
return runtime, engine_buffer
|
|
|
|
def load_test_cases():
|
|
test_cases = list(
|
|
product([
|
|
ContextFMHAType.disabled, ContextFMHAType.enabled,
|
|
ContextFMHAType.enabled_with_fp32_acc
|
|
], [False, True]))
|
|
|
|
return test_cases
|
|
|
|
@parameterized.expand(load_test_cases)
|
|
def test_gptj_plugin(self, context_fmha_flag, enable_remove_input_padding):
|
|
|
|
# Skip tests that are not supported in pre-ampere architecture
|
|
if getSMVersion() < 80:
|
|
if context_fmha_flag == ContextFMHAType.enabled:
|
|
pytest.skip(
|
|
"ContextFMHAType is not supported in pre-ampere architecture"
|
|
)
|
|
elif context_fmha_flag == ContextFMHAType.enabled_with_fp32_acc:
|
|
pytest.skip(
|
|
"ContextFMHAType with fp32 acc is not supported in pre-ampere architecture"
|
|
)
|
|
|
|
torch.random.manual_seed(0)
|
|
use_refit = False
|
|
dtype = 'float16'
|
|
world_size = 1
|
|
rank = 0
|
|
hidden_act = 'gelu'
|
|
n_layer = 2
|
|
max_length = 2
|
|
batch_size = 1
|
|
beam_width = 1
|
|
seq_len = 12
|
|
total_seq_len = max_length + seq_len
|
|
use_attention_plugin = True
|
|
use_ln_gemm_plugin = True
|
|
|
|
gpt_config, hf_gpt = self._gen_hf_gpt_j(hidden_act, n_layer,
|
|
seq_len + max_length, dtype)
|
|
runtime, _ = self._gen_tensorrt_llm_runtime(
|
|
dtype,
|
|
world_size,
|
|
rank,
|
|
gpt_config,
|
|
hf_gpt,
|
|
use_attention_plugin,
|
|
batch_size,
|
|
beam_width,
|
|
seq_len,
|
|
max_length,
|
|
use_refit,
|
|
use_ln_gemm_plugin,
|
|
context_fmha_flag,
|
|
enable_remove_input_padding=enable_remove_input_padding)
|
|
|
|
key_value_cache_buffers = []
|
|
head_size = gpt_config.n_embd // gpt_config.n_head
|
|
for i in range(gpt_config.n_layer):
|
|
key_value_cache_buffers.append(
|
|
torch.zeros((
|
|
batch_size,
|
|
2,
|
|
gpt_config.n_head,
|
|
total_seq_len,
|
|
head_size,
|
|
),
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
|
|
device='cuda'))
|
|
|
|
def run_engine(context,
|
|
input_ids,
|
|
context_lengths,
|
|
host_request_types,
|
|
position_ids,
|
|
last_token_ids,
|
|
cache_indirection,
|
|
host_past_key_value_lengths,
|
|
host_max_attention_window_sizes,
|
|
sequence_length,
|
|
host_context_lengths=None):
|
|
|
|
ctx_buffer = {
|
|
'input_ids': input_ids,
|
|
'context_lengths': context_lengths,
|
|
'host_request_types': host_request_types,
|
|
'position_ids': position_ids,
|
|
'last_token_ids': last_token_ids,
|
|
'cache_indirection': cache_indirection,
|
|
'host_past_key_value_lengths': host_past_key_value_lengths,
|
|
'sequence_length': sequence_length,
|
|
}
|
|
for i in range(gpt_config.n_layer):
|
|
ctx_buffer[f'past_key_value_{i}'] = key_value_cache_buffers[i]
|
|
ctx_buffer[
|
|
f'host_max_attention_window_size_{i}'] = host_max_attention_window_sizes
|
|
ctx_buffer[f'present_key_value_{i}'] = key_value_cache_buffers[
|
|
i]
|
|
|
|
if enable_remove_input_padding:
|
|
assert host_context_lengths is not None, "host_context_lengths is required for ragged input"
|
|
ctx_buffer['host_context_lengths'] = host_context_lengths
|
|
|
|
ctx_shape = {
|
|
key: buffer.shape
|
|
for key, buffer in ctx_buffer.items()
|
|
}
|
|
|
|
runtime._set_shape(context, ctx_shape)
|
|
runtime._set_buffer(context, ctx_buffer)
|
|
|
|
runtime._run(context)
|
|
torch.cuda.synchronize()
|
|
res = ctx_buffer['logits']
|
|
return res
|
|
|
|
cache_indirections = [
|
|
torch.full((
|
|
batch_size,
|
|
beam_width,
|
|
total_seq_len,
|
|
),
|
|
0,
|
|
dtype=torch.int32,
|
|
device='cuda'),
|
|
torch.full((
|
|
batch_size,
|
|
beam_width,
|
|
total_seq_len,
|
|
),
|
|
0,
|
|
dtype=torch.int32,
|
|
device='cuda')
|
|
] # ping-pong buffers
|
|
|
|
ctx_context_lengths = seq_len * torch.ones(
|
|
(batch_size), dtype=torch.int32, device='cuda')
|
|
|
|
# We need sequence_lengths start as context_lengths, and are added one in each step.
|
|
sequence_length_buffer = ctx_context_lengths.detach().clone()
|
|
|
|
hf_outputs = None
|
|
|
|
def compare_context():
|
|
ctx_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
|
|
|
|
with torch.no_grad():
|
|
nonlocal hf_outputs
|
|
hf_outputs = hf_gpt.forward(ctx_ids, use_cache=True)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :]
|
|
|
|
ctx_position_ids = torch.tensor(range(seq_len),
|
|
dtype=torch.int32).reshape([
|
|
1, seq_len
|
|
]).expand([batch_size,
|
|
seq_len]).cuda()
|
|
ctx_last_token_ids = ctx_context_lengths.clone()
|
|
|
|
if enable_remove_input_padding:
|
|
ctx_ids = ctx_ids.view([1, batch_size * seq_len])
|
|
ctx_position_ids = ctx_position_ids.view(
|
|
[1, batch_size * seq_len])
|
|
ctx_last_token_ids = torch.cumsum(ctx_last_token_ids,
|
|
dim=0).int()
|
|
|
|
host_request_types = torch.tensor([0 for i in range(batch_size)],
|
|
dtype=torch.int32).cpu()
|
|
host_past_key_value_lengths = torch.tensor([0] * batch_size,
|
|
dtype=torch.int32)
|
|
host_max_attention_window_sizes = torch.tensor([total_seq_len],
|
|
dtype=torch.int32)
|
|
|
|
host_context_lengths = ctx_context_lengths.cpu(
|
|
) if enable_remove_input_padding else None
|
|
|
|
res = run_engine(
|
|
context=runtime.ctx_context,
|
|
input_ids=ctx_ids,
|
|
context_lengths=ctx_context_lengths,
|
|
position_ids=ctx_position_ids,
|
|
last_token_ids=ctx_last_token_ids,
|
|
cache_indirection=cache_indirections[0],
|
|
host_past_key_value_lengths=host_past_key_value_lengths,
|
|
host_max_attention_window_sizes=host_max_attention_window_sizes,
|
|
sequence_length=sequence_length_buffer,
|
|
host_context_lengths=host_context_lengths,
|
|
host_request_types=host_request_types)
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
res.cpu().numpy(),
|
|
atol=1e-1)
|
|
|
|
v_inner = 16 // (2 if dtype == 'float16' else 4)
|
|
for i in range(gpt_config.n_layer):
|
|
res_present_key_value = key_value_cache_buffers[i]
|
|
|
|
past_key_value_tensor = res_present_key_value.permute(
|
|
1, 0, 2, 3, 4)
|
|
key, value = past_key_value_tensor.chunk(2)
|
|
|
|
# TRT-LLM has the same cache layout for key and value:
|
|
# [bs, n_head, max_seq_len, head_size]
|
|
head_size = gpt_config.n_embd // gpt_config.n_head
|
|
key = key.reshape(batch_size, gpt_config.n_head, total_seq_len,
|
|
head_size)
|
|
|
|
value = value.reshape(batch_size, gpt_config.n_head,
|
|
total_seq_len, head_size)
|
|
|
|
ref_present_key, ref_present_value = hf_outputs.past_key_values[
|
|
i]
|
|
|
|
np.testing.assert_allclose(ref_present_key.cpu().numpy(),
|
|
key[:, :, :seq_len, :].cpu().numpy(),
|
|
atol=1e-1)
|
|
np.testing.assert_allclose(
|
|
ref_present_value.cpu().numpy(),
|
|
value[:, :, :seq_len, :].cpu().numpy(),
|
|
atol=1e-1)
|
|
|
|
def compare_generation():
|
|
step1_id = torch.randint(100, (batch_size, 1)).int().cuda()
|
|
gen_position_ids = torch.ones_like(step1_id).int().cuda() * seq_len
|
|
gen_context_lengths = ctx_context_lengths.clone()
|
|
gen_last_token_ids = torch.zeros_like(
|
|
gen_context_lengths).int().cuda()
|
|
|
|
with torch.no_grad():
|
|
nonlocal hf_outputs
|
|
hf_outputs = hf_gpt.forward(
|
|
step1_id,
|
|
past_key_values=hf_outputs.past_key_values,
|
|
position_ids=gen_position_ids,
|
|
use_cache=True)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :]
|
|
|
|
if enable_remove_input_padding:
|
|
step1_id = step1_id.view([1, batch_size])
|
|
gen_position_ids = gen_position_ids.view([1, batch_size])
|
|
gen_last_token_ids = torch.ones_like(
|
|
gen_context_lengths).int().cuda()
|
|
gen_last_token_ids = torch.cumsum(gen_last_token_ids,
|
|
dim=0).int()
|
|
|
|
host_past_key_value_lengths = torch.tensor([seq_len] * batch_size,
|
|
dtype=torch.int32)
|
|
|
|
host_max_attention_window_sizes = torch.tensor([total_seq_len],
|
|
dtype=torch.int32)
|
|
|
|
host_request_types = torch.tensor([1] * batch_size,
|
|
dtype=torch.int32).cpu()
|
|
host_context_lengths = gen_context_lengths.cpu(
|
|
) if enable_remove_input_padding else None
|
|
|
|
# For step 1, the sequence_lengths = context_lengths + 1.
|
|
sequence_length_buffer = torch.add(ctx_context_lengths, 1)
|
|
|
|
res = run_engine(
|
|
context=runtime.context_1,
|
|
input_ids=step1_id,
|
|
# note we should pass context length for generation phase.
|
|
context_lengths=ctx_context_lengths,
|
|
position_ids=gen_position_ids,
|
|
last_token_ids=gen_last_token_ids,
|
|
cache_indirection=cache_indirections[1],
|
|
host_past_key_value_lengths=host_past_key_value_lengths,
|
|
host_max_attention_window_sizes=host_max_attention_window_sizes,
|
|
sequence_length=sequence_length_buffer,
|
|
host_context_lengths=host_context_lengths,
|
|
host_request_types=host_request_types)
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
res.cpu().numpy(),
|
|
atol=1e-1)
|
|
|
|
compare_context()
|
|
compare_generation()
|
|
|
|
def test_gptj_noplugin_supported(self):
|
|
|
|
use_refit = False
|
|
|
|
dtype = 'float16'
|
|
world_size = 1
|
|
rank = 0
|
|
hidden_act = 'gelu'
|
|
n_layer = 1
|
|
max_length = 2
|
|
batch_size = 4
|
|
seq_len = 128
|
|
use_attention_plugin = False
|
|
use_ln_gemm_plugin = True
|
|
beam_width = 1
|
|
|
|
gpt_config, hf_gpt = self._gen_hf_gpt_j(hidden_act, n_layer,
|
|
seq_len + max_length, dtype)
|
|
|
|
runtime, _ = self._gen_tensorrt_llm_runtime(
|
|
dtype, world_size, rank, gpt_config, hf_gpt, use_attention_plugin,
|
|
batch_size, beam_width, seq_len, max_length, use_refit,
|
|
use_ln_gemm_plugin)
|
|
|
|
use_ln_gemm_plugin = False
|
|
if trt.__version__[:3] == '8.6':
|
|
with self.assertRaisesRegex(
|
|
AssertionError,
|
|
"You need to enable the LayerNorm plugin for GPT-J with TensorRT"
|
|
):
|
|
runtime, _ = self._gen_tensorrt_llm_runtime(
|
|
dtype, world_size, rank, gpt_config, hf_gpt,
|
|
use_attention_plugin, batch_size, beam_width, seq_len,
|
|
max_length, use_refit, use_ln_gemm_plugin)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|