TensorRT-LLMs/tests/unittest/functional/test_pad.py
Kaiyu Xie 3aa6b11d13
Update TensorRT-LLM (#2936)
* Update TensorRT-LLM

---------

Co-authored-by: changcui <cuichang147@gmail.com>
2025-03-18 21:25:19 +08:00

74 lines
2.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session, unittest_name_func
class TestPad(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([
((1, 1), None),
((1, 1, 2, 2), None),
((0, 1, 2, 1, 3, 3), None),
((2, 1, 2, 0, 0, 3), 1.0),
],
name_func=unittest_name_func)
def test_pad(self, pad, padding_value):
# test data
dtype = 'float32'
x_shape = (3, 3, 4, 2)
x_data = torch.rand(x_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=x_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.pad(x,
pad=pad,
value=padding_value)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'x': x_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.nn.functional.pad(x_data, pad=pad, value=padding_value)
# compare diff
torch.testing.assert_close(ref, outputs['output'])