TensorRT-LLMs/cpp/tensorrt_llm/kernels/trtllmGenKernels/batchedGemm/KernelRunner.h
Guoming Zhang 6bace84167
[TRTLLM-10398][feat] Enable TRTLLM moe backend for Nemotron Super (#10791)
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
2026-01-31 13:48:25 +08:00

150 lines
6.7 KiB
C++

/*
* Copyright (c) 2020-2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/config.h"
#include <cstdint>
#include <cuda.h>
#include <vector>
#include "trtllmGen_bmm_export/trtllm/gen/DtypeDecl.h"
TRTLLM_NAMESPACE_BEGIN
namespace kernels
{
// Keep this in sync with the ActType in
// cpp/tensorrt_llm/kernels/trtllmGenKernels/batchedGemm/trtllmGen_bmm_export/GemmGatedActOptions.h
enum class ActType
{
// For ActType == SwiGlu, ideally we would like to have something like
// gatedAct = scaleC * (x0 * scaleAb + beta) * ((x1 * scaleGate) * sigmoid(alpha * x1 *
// scaleGate)).
// But for now, we use the simplified version
// gatedAct = scaleC' * (x0 + beta') * ((x1 * scaleGate) * sigmoid(alpha * x1 * scaleGate)),
// where x0 and x1 are the raw numbers from Gemm, while scaleC and scaleGate are input scales,
// beta' = beta / scaleAb, scaleC' = scaleC * scaleAb.
//
// GatedSilu is a special case of SwiGlu where the alpha is 1.0 and the beta is 0.0.
SwiGlu,
Relu2
};
// Type of the element-wise activation to apply after the Gemm
enum class EltwiseActType
{
None = 0,
// Gelu is defined as the following operation:
// act = x0 * phi(x0)
// where x0 is the output of the Gemm
// phi is the CDF of standard normal distribution approximated by
// phi(x) = 0.5 * (1 + tanh(0.7978845608028654 * (x + 0.044715 * x * x * x)))
Gelu,
// Relu2 (also known as squared Relu) is defined as the following operation:
// act = relu(x0) ^ 2
// where x0 is the output of the Gemm.
Relu2,
};
struct TrtllmGenBatchedGemmRunnerOptions
{
batchedGemm::trtllm::gen::Dtype dtypeA;
batchedGemm::trtllm::gen::Dtype dtypeB;
batchedGemm::trtllm::gen::Dtype dtypeC;
ActType actType{ActType::SwiGlu};
EltwiseActType eltwiseActType{EltwiseActType::None};
bool deepSeekFp8{false};
bool fusedAct{false};
bool routeAct{false};
bool staticBatch{false};
bool transposeMmaOutput{false};
int32_t tileSize{8};
int32_t epilogueTileM{128};
};
class TrtllmGenBatchedGemmRunner
{
public:
explicit TrtllmGenBatchedGemmRunner(TrtllmGenBatchedGemmRunnerOptions const& options);
[[nodiscard]] size_t getWorkspaceSizeInBytes(int32_t m, int32_t n, int32_t k,
std::vector<int32_t> const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim,
int32_t configIndex) const;
// Generic GEMM interface
void run(int32_t m, int32_t n, int32_t k, int32_t validM, int32_t validN, int32_t validK,
std::vector<int32_t> const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim,
void const* a, void const* sfA, void const* b, void const* sfB, void const* perTokensSfA,
void const* perTokensSfB, float const* scaleC, float const* scaleGateC, float const* bias,
float const* swiGluAlpha, float const* swiGluBeta, float const* clampLimit, void* c, void* outSfC,
int32_t const* routeMap, int32_t const* totalNumPaddedTokens, int32_t const* ctaIdxXyToBatchIdx,
int32_t const* ctaIdxXyToMnLimit, int32_t const* numNonExitingCtas, void* workspace, CUstream stream,
int device, int32_t configIndex);
// Block-scaling GEMM
void run(int32_t m, int32_t n, int32_t k, std::vector<int32_t> const& batchedTokens, void const* a, void const* sfA,
void const* b, void const* sfB, void* c, void* outSfC, void* workspace, CUstream stream, int device,
int32_t configIndex, int32_t validM = -1, int32_t validN = -1, int32_t validK = -1);
// Block-scaling GEMM with SwiGLU activation
void run(int32_t m, int32_t n, int32_t k, std::vector<int32_t> const& batchedTokens, void const* a, void const* sfA,
void const* b, void const* sfB, float const* bias, float const* swiGluAlpha, float const* swiGluBeta,
float const* clampLimit, void* c, void* outSfC, void* workspace, CUstream stream, int device,
int32_t configIndex, int32_t validM = -1, int32_t validN = -1, int32_t validK = -1);
// FP8 per-tensor scaling GEMM
void run(int32_t m, int32_t n, int32_t k, std::vector<int32_t> const& batchedTokens, void const* a, void const* b,
float const* scaleC, float const* scaleGateC, void* c, void* workspace, CUstream stream, int device,
int32_t configIndex, int32_t validM = -1, int32_t validN = -1, int32_t validK = -1);
// Get the list of configs that passed the validation based on the constructor options
[[nodiscard]] std::vector<int64_t> getPassingConfigIndices() const
{
return mPassingConfigIndices;
}
// Get the kernel name from the config index
[[nodiscard]] std::string getKernelNameFromConfigIndex(int32_t configIndex) const;
// Get the list of config indices that are valid for the given problem shape
[[nodiscard]] std::vector<int64_t> getValidConfigIndices(int32_t m, int32_t n, int32_t k,
std::vector<int32_t> const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim,
int32_t validM = -1, int32_t validN = -1, int32_t validK = -1) const;
// Get a default config index that is valid for the given problem shape
// This will be used as the fallback config if using auto-tuning
[[nodiscard]] int64_t getDefaultValidConfigIndex(int32_t m, int32_t n, int32_t k,
std::vector<int32_t> const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim,
int32_t validM = -1, int32_t validN = -1, int32_t validK = -1) const;
[[nodiscard]] bool isValidConfigIndex(int32_t configIndex, int32_t m, int32_t n, int32_t k,
std::vector<int32_t> const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim,
int32_t validM = -1, int32_t validN = -1, int32_t validK = -1) const;
private:
void selectGemmConfig(int32_t m, int32_t n, int32_t k, std::vector<int32_t> const& batchedTokens, int32_t numTokens,
int32_t numBatches, int32_t maxNumCtasInBatchDim);
private:
TrtllmGenBatchedGemmRunnerOptions mOptions;
std::vector<int64_t> mPassingConfigIndices;
};
} // namespace kernels
TRTLLM_NAMESPACE_END