mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
272 lines
9.1 KiB
C++
272 lines
9.1 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/opUtils.h"
|
|
#include "tensorrt_llm/runtime/utils/mpiTags.h"
|
|
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
|
|
|
|
#include "cuda.h"
|
|
#include <cuda_bf16.h>
|
|
#include <cuda_fp16.h>
|
|
#include <cuda_fp8.h>
|
|
|
|
#include <functional>
|
|
#include <mutex>
|
|
#include <thread>
|
|
|
|
#if ENABLE_MULTI_DEVICE
|
|
|
|
std::unordered_map<nvinfer1::DataType, ncclDataType_t>* getDtypeMap()
|
|
{
|
|
static std::unordered_map<nvinfer1::DataType, ncclDataType_t> dtypeMap = {
|
|
{nvinfer1::DataType::kFLOAT, ncclFloat32},
|
|
{nvinfer1::DataType::kHALF, ncclFloat16},
|
|
{nvinfer1::DataType::kBF16, ncclBfloat16},
|
|
{nvinfer1::DataType::kFP8, ncclInt8},
|
|
{nvinfer1::DataType::kBOOL, ncclInt8},
|
|
{nvinfer1::DataType::kINT32, ncclInt32},
|
|
{nvinfer1::DataType::kINT64, ncclInt64},
|
|
{nvinfer1::DataType::kUINT8, ncclUint8},
|
|
{nvinfer1::DataType::kINT8, ncclInt8},
|
|
};
|
|
return &dtypeMap;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
|
|
// Get NCCL unique ID for a group of ranks.
|
|
ncclUniqueId getUniqueId(std::set<int> const& group)
|
|
{
|
|
auto const rank = COMM_SESSION.getRank();
|
|
TLLM_LOG_TRACE("%s start for rank %d", __PRETTY_FUNCTION__, rank);
|
|
ncclUniqueId id;
|
|
if (rank == *group.begin())
|
|
{
|
|
NCCLCHECK_THROW(ncclGetUniqueId(&id));
|
|
for (auto it = std::next(std::begin(group), 1); it != group.end(); ++it)
|
|
{
|
|
COMM_SESSION.sendValue(id, *it, tensorrt_llm::mpi::MpiTag::kDefault);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
COMM_SESSION.recvValue(id, *group.begin(), tensorrt_llm::mpi::MpiTag::kDefault);
|
|
}
|
|
TLLM_LOG_TRACE("%s stop for rank %d", __PRETTY_FUNCTION__, rank);
|
|
return id;
|
|
}
|
|
} // namespace
|
|
|
|
std::shared_ptr<ncclComm_t> getComm(std::set<int> const& group)
|
|
{
|
|
auto const rank = COMM_SESSION.getRank();
|
|
TLLM_LOG_TRACE("%s start for rank %d", __PRETTY_FUNCTION__, rank);
|
|
static std::map<std::set<int>, std::shared_ptr<ncclComm_t>> commMap;
|
|
static std::mutex mutex;
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
std::ostringstream oss;
|
|
int index = 0;
|
|
for (auto const& rank : group)
|
|
{
|
|
if (index != 0)
|
|
{
|
|
oss << ",";
|
|
}
|
|
oss << rank;
|
|
index++;
|
|
}
|
|
auto groupStr = oss.str();
|
|
auto it = commMap.find(group);
|
|
if (it != commMap.end())
|
|
{
|
|
auto ncclComm = it->second;
|
|
TLLM_LOG_TRACE("NCCL comm for group(%s) is cached for rank %d", groupStr.c_str(), rank);
|
|
return ncclComm;
|
|
}
|
|
|
|
TLLM_LOG_TRACE("Init NCCL comm for group(%s) for rank %d", groupStr.c_str(), rank);
|
|
ncclUniqueId id = getUniqueId(group);
|
|
int groupRank = 0;
|
|
for (auto const& currentRank : group)
|
|
{
|
|
if (rank == currentRank)
|
|
break;
|
|
++groupRank;
|
|
}
|
|
TLLM_CHECK(static_cast<size_t>(groupRank) < group.size());
|
|
std::shared_ptr<ncclComm_t> ncclComm(new ncclComm_t,
|
|
[](ncclComm_t* comm)
|
|
{
|
|
ncclCommDestroy(*comm);
|
|
delete comm;
|
|
});
|
|
// Need static connection initialization for accurate KV cache size estimation
|
|
#if defined(_WIN32)
|
|
if (getenv("NCCL_RUNTIME_CONNECT") == nullptr)
|
|
_putenv_s("NCCL_RUNTIME_CONNECT", "0");
|
|
#else
|
|
setenv("NCCL_RUNTIME_CONNECT", "0", 0);
|
|
#endif // _WIN32
|
|
NCCLCHECK_THROW(ncclCommInitRank(ncclComm.get(), group.size(), id, groupRank));
|
|
commMap[group] = ncclComm;
|
|
TLLM_LOG_TRACE("%s stop for rank %d", __PRETTY_FUNCTION__, rank);
|
|
return ncclComm;
|
|
}
|
|
#endif // ENABLE_MULTI_DEVICE
|
|
|
|
void const* tensorrt_llm::common::op::getCommSessionHandle()
|
|
{
|
|
#if ENABLE_MULTI_DEVICE
|
|
return &COMM_SESSION;
|
|
#else
|
|
return nullptr;
|
|
#endif // ENABLE_MULTI_DEVICE
|
|
}
|
|
|
|
namespace
|
|
{
|
|
using tensorrt_llm::common::op::hash;
|
|
|
|
// Get current cuda context, a default context will be created if there is no context.
|
|
inline CUcontext getCurrentCudaCtx()
|
|
{
|
|
CUcontext ctx{};
|
|
CUresult err = cuCtxGetCurrent(&ctx);
|
|
if (err == CUDA_ERROR_NOT_INITIALIZED || ctx == nullptr)
|
|
{
|
|
TLLM_CUDA_CHECK(cudaFree(nullptr));
|
|
err = cuCtxGetCurrent(&ctx);
|
|
}
|
|
TLLM_CHECK(err == CUDA_SUCCESS);
|
|
return ctx;
|
|
}
|
|
|
|
// Helper to create per-cuda-context and per-thread singleton managed by std::shared_ptr.
|
|
// Unlike conventional singletons, singleton created with this will be released
|
|
// when not needed, instead of on process exit.
|
|
// Objects of this class shall always be declared static / global, and shall never own CUDA
|
|
// resources.
|
|
template <typename T>
|
|
class PerCudaCtxPerThreadSingletonCreator
|
|
{
|
|
public:
|
|
using CreatorFunc = std::function<std::unique_ptr<T>()>;
|
|
using DeleterFunc = std::function<void(T*)>;
|
|
|
|
// creator returning std::unique_ptr is by design.
|
|
// It forces separation of memory for T and memory for control blocks.
|
|
// So when T is released, but we still have observer weak_ptr in mObservers, the T mem block can be released.
|
|
// creator itself must not own CUDA resources. Only the object it creates can.
|
|
PerCudaCtxPerThreadSingletonCreator(CreatorFunc creator, DeleterFunc deleter)
|
|
: mCreator{std::move(creator)}
|
|
, mDeleter{std::move(deleter)}
|
|
{
|
|
}
|
|
|
|
std::shared_ptr<T> operator()()
|
|
{
|
|
std::lock_guard<std::mutex> lk{mMutex};
|
|
CUcontext ctx{getCurrentCudaCtx()};
|
|
std::thread::id thread = std::this_thread::get_id();
|
|
auto const key = std::make_tuple(ctx, thread);
|
|
std::shared_ptr<T> result = mObservers[key].lock();
|
|
if (result == nullptr)
|
|
{
|
|
TLLM_LOG_TRACE("creating singleton instance for CUDA context %lu and thread %lu", ctx, thread);
|
|
// Create the resource and register with an observer.
|
|
result = std::shared_ptr<T>{mCreator().release(),
|
|
[this, key](T* obj)
|
|
{
|
|
if (obj == nullptr)
|
|
{
|
|
return;
|
|
}
|
|
mDeleter(obj);
|
|
|
|
// Clears observer to avoid growth of mObservers, in case users creates/destroys cuda contexts
|
|
// frequently.
|
|
std::shared_ptr<T> observedObjHolder; // Delay destroy to avoid dead lock.
|
|
std::lock_guard<std::mutex> lk{mMutex};
|
|
// Must check observer again because another thread may created new instance for this ctx and this
|
|
// thread just before we lock mMutex. We can't infer that the observer is stale from the fact that
|
|
// obj is destroyed, because shared_ptr ref-count checking and observer removing are not in one
|
|
// atomic operation, and the observer may be changed to observe another instance.
|
|
if (mObservers.find(key) == mObservers.end())
|
|
{
|
|
return;
|
|
}
|
|
observedObjHolder = mObservers.at(key).lock();
|
|
if (observedObjHolder == nullptr)
|
|
{
|
|
mObservers.erase(key);
|
|
}
|
|
}};
|
|
mObservers.at(key) = result;
|
|
}
|
|
else
|
|
{
|
|
TLLM_LOG_TRACE("singleton instance for CUDA context %d and thread %d is cached", ctx, thread);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
CreatorFunc mCreator;
|
|
DeleterFunc mDeleter;
|
|
mutable std::mutex mMutex;
|
|
// CUDA resources are per-context and per-thread.
|
|
using CacheKey = std::tuple<CUcontext, std::thread::id>;
|
|
std::unordered_map<CacheKey, std::weak_ptr<T>, hash<CacheKey>> mObservers;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::shared_ptr<cublasHandle_t> getCublasHandle()
|
|
{
|
|
static PerCudaCtxPerThreadSingletonCreator<cublasHandle_t> creator(
|
|
[]() -> auto
|
|
{
|
|
auto handle = std::unique_ptr<cublasHandle_t>(new cublasHandle_t);
|
|
TLLM_CUDA_CHECK(cublasCreate(handle.get()));
|
|
return handle;
|
|
},
|
|
[](cublasHandle_t* handle)
|
|
{
|
|
TLLM_CUDA_CHECK(cublasDestroy(*handle));
|
|
delete handle;
|
|
});
|
|
return creator();
|
|
}
|
|
|
|
std::shared_ptr<cublasLtHandle_t> getCublasLtHandle()
|
|
{
|
|
static PerCudaCtxPerThreadSingletonCreator<cublasLtHandle_t> creator(
|
|
[]() -> auto
|
|
{
|
|
auto handle = std::unique_ptr<cublasLtHandle_t>(new cublasLtHandle_t);
|
|
TLLM_CUDA_CHECK(cublasLtCreate(handle.get()));
|
|
return handle;
|
|
},
|
|
[](cublasLtHandle_t* handle)
|
|
{
|
|
TLLM_CUDA_CHECK(cublasLtDestroy(*handle));
|
|
delete handle;
|
|
});
|
|
return creator();
|
|
}
|