mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
137 lines
5.3 KiB
Python
137 lines
5.3 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import os
|
|
|
|
import torch
|
|
from diffusers.models import AutoencoderKL
|
|
|
|
|
|
class TRT_Exporter(object):
|
|
|
|
def __init__(self, pytorch_model, max_batch_size, latent_channel,
|
|
latent_shape):
|
|
self.pytorch_model = pytorch_model
|
|
self.max_batch_size = max_batch_size
|
|
self.latent_channel = latent_channel
|
|
self.latent_shape = latent_shape
|
|
|
|
def export_onnx(self, onnxFile):
|
|
print(f"Start exporting ONNX model to {onnxFile}!")
|
|
latent = torch.randn(self.max_batch_size, self.latent_channel,
|
|
*self.latent_shape).cuda()
|
|
self.pytorch_model.cuda().eval()
|
|
with torch.inference_mode():
|
|
torch.onnx.export(self.pytorch_model,
|
|
latent,
|
|
onnxFile,
|
|
opset_version=17,
|
|
input_names=['input'],
|
|
output_names=['output'],
|
|
dynamic_axes={'input': {
|
|
0: 'batch'
|
|
}})
|
|
|
|
def generate_trt_engine(self, onnxFile, planFile):
|
|
print(f"Start exporting TRT model to {planFile}!")
|
|
from time import time
|
|
|
|
import tensorrt as trt
|
|
logger = trt.Logger(trt.Logger.VERBOSE)
|
|
builder = trt.Builder(logger)
|
|
network = builder.create_network(
|
|
1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
|
|
profile = builder.create_optimization_profile()
|
|
config = builder.create_builder_config()
|
|
config.set_flag(trt.BuilderFlag.FP16)
|
|
parser = trt.OnnxParser(network, logger)
|
|
|
|
with open(onnxFile, 'rb') as model:
|
|
if not parser.parse(model.read(), "/".join(onnxFile.split("/"))):
|
|
print("Failed parsing %s" % onnxFile)
|
|
for error in range(parser.num_errors):
|
|
print(parser.get_error(error))
|
|
print("Succeeded parsing %s" % onnxFile)
|
|
|
|
nBS = -1
|
|
nMinBS = 1
|
|
nMaxBS = self.max_batch_size
|
|
nOptBS = (nMaxBS + nMinBS) // 2
|
|
inputT = network.get_input(0)
|
|
inputT.shape = [nBS, self.latent_channel, *self.latent_shape]
|
|
profile.set_shape(inputT.name,
|
|
[nMinBS, self.latent_channel, *self.latent_shape],
|
|
[nOptBS, self.latent_channel, *self.latent_shape],
|
|
[nMaxBS, self.latent_channel, *self.latent_shape])
|
|
|
|
config.add_optimization_profile(profile)
|
|
|
|
t0 = time()
|
|
engineString = builder.build_serialized_network(network, config)
|
|
t1 = time()
|
|
if engineString is None:
|
|
print("Failed building %s" % planFile)
|
|
else:
|
|
print("Succeeded building %s in %d s" % (planFile, t1 - t0))
|
|
print("plan file is", planFile)
|
|
with open(planFile, 'wb') as f:
|
|
f.write(engineString)
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--vae",
|
|
type=str,
|
|
choices=["ema", "mse"],
|
|
default="mse")
|
|
parser.add_argument('--max_batch_size', type=int, default=8)
|
|
parser.add_argument("--image-size",
|
|
type=int,
|
|
choices=[256, 512],
|
|
default=512)
|
|
parser.add_argument('--onnxFile',
|
|
type=str,
|
|
default='vae_decoder/onnx/visual_encoder.onnx',
|
|
help='')
|
|
parser.add_argument('--planFile',
|
|
type=str,
|
|
default='vae_decoder/plan/visual_encoder_fp16.plan',
|
|
help='')
|
|
parser.add_argument('--only_trt',
|
|
action='store_true',
|
|
help='Run only convert the onnx to TRT engine.')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
onnx_file_dir = os.path.dirname(args.onnxFile)
|
|
if not onnx_file_dir == '' and not os.path.exists(onnx_file_dir):
|
|
os.makedirs(onnx_file_dir)
|
|
plan_file_dir = os.path.dirname(args.planFile)
|
|
if not os.path.exists(plan_file_dir):
|
|
os.makedirs(plan_file_dir)
|
|
|
|
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}")
|
|
vae.forward = vae.decode
|
|
latant_shape = [args.image_size // 8] * 2
|
|
onnx_trt_obj = TRT_Exporter(vae, args.max_batch_size, 4, latant_shape)
|
|
if args.only_trt:
|
|
onnx_trt_obj.generate_trt_engine(args.onnxFile, args.planFile)
|
|
else:
|
|
onnx_trt_obj.export_onnx(args.onnxFile)
|
|
onnx_trt_obj.generate_trt_engine(args.onnxFile, args.planFile)
|