mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
169 lines
6.6 KiB
Python
169 lines
6.6 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Module test_commandr test commandr examples."""
|
|
import os
|
|
|
|
import pytest
|
|
from defs.common import (convert_weights, generate_summary_cmd, venv_check_call,
|
|
venv_mpi_check_call)
|
|
from defs.conftest import (get_gpu_device_list, get_sm_version,
|
|
skip_post_blackwell)
|
|
from defs.trt_test_alternative import check_call
|
|
|
|
# skip trt flow cases on post-Blackwell-Ultra
|
|
if get_sm_version() >= 103:
|
|
pytest.skip(
|
|
"TRT workflow tests are not supported on post Blackwell-Ultra architecture",
|
|
allow_module_level=True)
|
|
|
|
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@skip_post_blackwell
|
|
@pytest.mark.parametrize("use_weight_only", [True, False],
|
|
ids=["enable_weight_only", "disable_weight_only"])
|
|
def test_llm_commandr_v01_single_gpu_summary(commandr_example_root,
|
|
llm_commandr_v01_model_root,
|
|
llm_datasets_root, llm_rouge_root,
|
|
llm_venv, cmodel_dir, engine_dir,
|
|
use_weight_only):
|
|
"Build & run commandr_v01 on single gpu."
|
|
if "GH200" in get_gpu_device_list()[0] and not use_weight_only:
|
|
pytest.skip("OOM on GH200. https://nvbugs/5250460")
|
|
|
|
print("Converting checkpoint...")
|
|
dtype = 'float16'
|
|
model_name = os.path.basename(llm_commandr_v01_model_root)
|
|
ckpt_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=commandr_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_commandr_v01_model_root,
|
|
data_type=dtype,
|
|
use_weight_only=use_weight_only)
|
|
|
|
print("Building engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--max_batch_size={8}",
|
|
f"--max_input_len={924}",
|
|
f"--max_seq_len={1024}",
|
|
f"--gemm_plugin={dtype}",
|
|
f"--gpt_attention_plugin={dtype}",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
summary_cmd = [
|
|
f"{commandr_example_root}/../../../summarize.py",
|
|
"--test_trt_llm",
|
|
"--hf_model_dir",
|
|
f"{llm_commandr_v01_model_root}",
|
|
"--data_type",
|
|
"fp16",
|
|
"--check_accuracy",
|
|
f"--engine_dir={engine_dir}",
|
|
"--tensorrt_llm_rouge1_threshold=12",
|
|
f"--dataset_dir={llm_datasets_root}",
|
|
f"--rouge_dir={llm_rouge_root}",
|
|
]
|
|
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.skip_less_host_memory(1000000)
|
|
@pytest.mark.parametrize("use_weight_only",
|
|
[pytest.param(True, marks=skip_post_blackwell), False],
|
|
ids=["enable_weight_only", "disable_weight_only"])
|
|
def test_llm_commandr_plus_4gpus_summary(commandr_example_root,
|
|
llm_commandr_plus_model_root,
|
|
llm_datasets_root, llm_rouge_root,
|
|
llm_venv, cmodel_dir, engine_dir,
|
|
use_weight_only, timeout_manager):
|
|
"Build & run Command-R+ with smoothquant on 4 gpus."
|
|
dtype = 'float16'
|
|
tp_size = 4
|
|
model_name = os.path.basename(llm_commandr_plus_model_root)
|
|
|
|
# Convert checkpoint with timeout management
|
|
print("Converting checkpoint...")
|
|
with timeout_manager.timed_operation("convert"):
|
|
ckpt_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=commandr_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_commandr_plus_model_root,
|
|
data_type=dtype,
|
|
tp_size=tp_size,
|
|
gpus=tp_size,
|
|
use_weight_only=use_weight_only,
|
|
timeout=timeout_manager.remaining_timeout)
|
|
|
|
# Build engines with timeout management
|
|
print("Building engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--max_batch_size={8}",
|
|
f"--max_input_len={924}",
|
|
f"--max_seq_len={1024}",
|
|
f"--max_beam_width={4}",
|
|
f"--gemm_plugin={dtype}",
|
|
f"--gpt_attention_plugin={dtype}",
|
|
]
|
|
|
|
run_cmd = [
|
|
f"{commandr_example_root}/../../../run.py",
|
|
f"--max_output_len={50}",
|
|
f"--tokenizer_dir={llm_commandr_plus_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
]
|
|
|
|
with timeout_manager.timed_operation("build"):
|
|
check_call(" ".join(build_cmd),
|
|
shell=True,
|
|
env=llm_venv._new_env,
|
|
timeout=timeout_manager.remaining_timeout)
|
|
|
|
# Run engines with timeout management
|
|
print("Running engines...")
|
|
with timeout_manager.timed_operation("run"):
|
|
venv_mpi_check_call(
|
|
llm_venv, ["mpirun", "-n",
|
|
str(tp_size), "--allow-run-as-root"],
|
|
run_cmd,
|
|
timeout=timeout_manager.remaining_timeout)
|
|
|
|
# Run summary with timeout management
|
|
print("Running summary...")
|
|
summary_cmd = generate_summary_cmd(
|
|
commandr_example_root,
|
|
hf_model_dir=llm_commandr_plus_model_root,
|
|
data_type="fp16",
|
|
engine_dir=engine_dir,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
with timeout_manager.timed_operation("summary"):
|
|
venv_mpi_check_call(
|
|
llm_venv, ["mpirun", "-n",
|
|
str(tp_size), "--allow-run-as-root"],
|
|
summary_cmd,
|
|
timeout=timeout_manager.remaining_timeout)
|