TensorRT-LLMs/cpp/tensorrt_llm/batch_manager/rnnStateBuffers.h
2025-03-11 21:13:42 +08:00

59 lines
1.7 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/batch_manager/common.h"
#include "tensorrt_llm/runtime/iTensor.h"
namespace tensorrt_llm::runtime
{
class TllmRuntime;
} // namespace tensorrt_llm::runtime
namespace tensorrt_llm::batch_manager
{
namespace rnn_state_manager
{
class RnnStateManager;
}
class RnnStateBuffers
{
public:
using SizeType32 = tensorrt_llm::runtime::SizeType32;
using TensorPtr = runtime::ITensor::SharedPtr;
using TensorMap = runtime::StringPtrMap<runtime::ITensor>;
// others should be in rnnStateManager, we only need slotMapping here.
TensorPtr slotMappingHost; // [batch_size]
TensorPtr slotMappingDevice; // [batch_size]
RnnStateBuffers(SizeType32 maxBatchSize, runtime::TllmRuntime const& runtime);
void reshape(SizeType32 numSequences);
void fillSlotMappings(RequestVector const& contextRequests, rnn_state_manager::RnnStateManager* rnnStateManager);
void copySlotMappingH2D(runtime::TllmRuntime const& runtime);
void getBuffers(TensorMap& inputBuffers) const;
};
} // namespace tensorrt_llm::batch_manager