TensorRT-LLMs/cpp/tensorrt_llm/batch_manager/evictionPolicy.cpp
Thor Johnsen 55d56f8155
[JIRA-5226219][fix] Fix Bug in KV cache manager (#4596)
Signed-off-by: Thor Johnsen <41591019+thorjohnsen@users.noreply.github.com>
2025-05-29 22:03:20 -07:00

280 lines
9.9 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/batch_manager/evictionPolicy.h"
using namespace tensorrt_llm::batch_manager::kv_cache_manager;
// This implements priority-based eviction.
// Blocks are assigned priority levels, with blocks at a lower priority evicted before blocks at a higher priority.
// New priority values always override the previous value.
namespace tensorrt_llm::batch_manager::eviction_policy
{
auto const kMinPriority = executor::KvCacheRetentionConfig::kMinRetentionPriority;
auto const kMaxPriority = executor::KvCacheRetentionConfig::kMaxRetentionPriority;
auto const kDefaultPriority = executor::KvCacheRetentionConfig::kDefaultRetentionPriority;
executor::RetentionPriority const kDefaultSecondaryOffloadMinPriority = 30;
int const kNumCacheLevels = 2;
namespace
{
SizeType32 getCacheLevel(BlockPtr const& block)
{
return block->isPrimary() ? 0 : 1;
}
SizeType32 getPriorityIdx(executor::RetentionPriority priority)
{
return priority - kMinPriority;
}
} // namespace
void LRUEvictionPolicy::initialize(std::vector<BlockPtr>& mAllBlocksById, std::vector<SizeType32> sizes,
std::optional<executor::RetentionPriority> secondaryOffloadMinPriority)
{
SizeType32 startIdx = 0;
auto const defaultPriorityIdx = getPriorityIdx(kDefaultPriority);
// For each cache level, create a separate list of queues.
for (SizeType32 cacheLevel = 0; cacheLevel < kNumCacheLevels; cacheLevel++)
{
mFreeBlockIterators.reserve(mFreeBlockIterators.size() + sizes[cacheLevel]);
mFreeQueues.emplace_back(std::vector<FreeBlocksQueue>(kMaxPriority - kMinPriority + 1));
mReleasedBlocks.emplace_back(std::unordered_set<SizeType32>());
auto& freeQueue = mFreeQueues[cacheLevel][defaultPriorityIdx];
for (SizeType32 blockId = 0; blockId < sizes[cacheLevel]; blockId++)
{
// Initialize all blocks to be the default priority level
mFreeBlockIterators.emplace_back(freeQueue.insert(freeQueue.end(), mAllBlocksById[startIdx + blockId]));
mReleasedBlocks[cacheLevel].insert(startIdx + blockId);
}
startIdx += sizes[cacheLevel];
}
mNumFreeBlocksPerLevel = sizes;
mSecondaryOffloadMinPriority = secondaryOffloadMinPriority.value_or(kDefaultSecondaryOffloadMinPriority);
}
bool LRUEvictionPolicy::verifyQueueIntegrity()
{
bool queueCompromised = false;
for (SizeType32 cacheLevel = 0; cacheLevel < 2; cacheLevel++)
{
for (SizeType32 level = 0; level < kMaxPriority - kMinPriority + 1; level++)
{
for (auto const& block : mFreeQueues[cacheLevel][level])
{
if ((cacheLevel == 0 && !block->isPrimary()) || (cacheLevel == 1 && block->isPrimary()))
{
TLLM_LOG_WARNING("Found %s block (id %d) at cacheLevel %d",
block->isPrimary() ? "primary" : "secondary", block->getBlockId(), cacheLevel);
queueCompromised = true;
}
if (block->hasRefs())
{
TLLM_LOG_WARNING(
"Found block (id %d) with references at cacheLevel %d", block->getBlockId(), cacheLevel);
queueCompromised = true;
}
}
}
}
TLLM_LOG_DEBUG("LRUEvictionPolicy queues are %s", queueCompromised ? "compromised" : "not compromised");
return !queueCompromised;
}
std::tuple<BlockPtr, bool> LRUEvictionPolicy::getFreeBlock(SizeType32 cacheLevel)
{
for (SizeType32 level = 0; level < kMaxPriority - kMinPriority + 1; level++)
{
// Find the first non-empty queue, and return the first block.
if (!mFreeQueues[cacheLevel][level].empty())
{
auto block = mFreeQueues[cacheLevel][level].front();
// mFreeQueues only contains leaf blocks, so no need to iterate through the next block pointers.
// It's possible to have a primary block with children in secondary memory. We handle this
// by freeing all descendants in WindowBlockManager::getFreeBlock. This is done either by
// offloading (preferred method) or explicitly.
return std::make_tuple(block, cacheLevel == 0 && level >= mSecondaryOffloadMinPriority);
}
}
TLLM_THROW("No free block found. This shouldn't happen!");
}
void LRUEvictionPolicy::releaseBlock(BlockPtr block)
{
releaseBlock(block, false);
}
void LRUEvictionPolicy::releaseBlock(BlockPtr block, bool toFront)
{
SizeType32 const cacheLevel = getCacheLevel(block);
SizeType32 const id = block->getBlockId();
mReleasedBlocks[cacheLevel].insert(id);
// It's possible that this block is the child of a matched block that's in mFreeQueues. If this happens, we need to
// remove the parent from mFreeQueues, since it's no longer a released leaf block.
auto parent = block->getPrevBlock();
if (parent != nullptr)
{
auto const parentId = parent->getBlockId();
if (parentId != KVCacheBlock::kCachedBlocksRootId && mFreeBlockIterators[parent->getBlockId()] != std::nullopt
&& !isReleasedLeafBlock(parent))
{
mFreeQueues[getCacheLevel(parent)][getPriorityIdx(parent->getPriority())].erase(
*mFreeBlockIterators[parentId]);
mFreeBlockIterators[parentId] = std::nullopt;
}
}
if (mFreeBlockIterators[block->getBlockId()] == std::nullopt && isReleasedLeafBlock(block))
{
// If there are no children, this is a leaf block. Insert into a queue.
auto& q = mFreeQueues[cacheLevel][getPriorityIdx(block->getPriority())];
if (toFront)
{
mFreeBlockIterators[id] = q.insert(q.begin(), block);
}
else
{
mFreeBlockIterators[id] = q.insert(q.end(), block);
}
}
mNumFreeBlocksPerLevel[cacheLevel]++;
if (block->getDurationMs().has_value()
&& block->getPriority() != executor::KvCacheRetentionConfig::kDefaultRetentionPriority)
{
auto expirationTime = getTime() + *block->getDurationMs();
block->setExpirationTime(expirationTime);
mExpiringBlockHeap.emplace(block);
}
}
SizeType32 LRUEvictionPolicy::getNumFreeBlocks(SizeType32 cacheLevel)
{
return mNumFreeBlocksPerLevel[cacheLevel];
}
void LRUEvictionPolicy::claimBlock(BlockPtr block)
{
claimBlock(block, std::nullopt, std::nullopt);
}
void LRUEvictionPolicy::claimBlock(BlockPtr block, std::optional<executor::RetentionPriority> priority,
std::optional<std::chrono::milliseconds> durationMs)
{
SizeType32 const id = block->getBlockId();
SizeType32 const cacheLevel = getCacheLevel(block);
if (mReleasedBlocks[cacheLevel].find(id) != mReleasedBlocks[cacheLevel].end())
{
mNumFreeBlocksPerLevel[cacheLevel] -= 1;
mReleasedBlocks[cacheLevel].erase(id);
}
if (mFreeBlockIterators[id] != std::nullopt)
{
mFreeQueues[cacheLevel][getPriorityIdx(block->getPriority())].erase(*mFreeBlockIterators[id]);
BlockPtr const parent = block->getPrevBlock();
if (parent.get() != nullptr && parent->getBlockId() != KVCacheBlock::kCachedBlocksRootId
&& mFreeBlockIterators[parent->getBlockId()] == std::nullopt && isReleasedLeafBlock(parent))
{
auto& q = mFreeQueues[getCacheLevel(parent)][getPriorityIdx(parent->getPriority())];
mFreeBlockIterators[parent->getBlockId()] = q.insert(q.end(), parent);
}
}
mFreeBlockIterators[id] = std::nullopt;
if (priority.has_value())
{
block->setPriority(*priority);
}
mExpiringBlockHeap.erase(block);
block->setDurationMs(durationMs);
}
bool LRUEvictionPolicy::isReleasedLeafBlock(BlockPtr const& block)
{
SizeType32 const blockCacheLevel = getCacheLevel(block);
if (mReleasedBlocks[blockCacheLevel].find(block->getBlockId()) == mReleasedBlocks[blockCacheLevel].end())
{
return false;
}
for (auto const& p : block->getNextBlocks())
{
SizeType32 const childCacheLevel = getCacheLevel(p.second);
if (mReleasedBlocks[childCacheLevel].find(p.second->getBlockId()) != mReleasedBlocks[childCacheLevel].end()
&& childCacheLevel <= blockCacheLevel)
{
return false;
}
}
return true;
}
std::chrono::steady_clock::time_point::duration LRUEvictionPolicy::getTime() const
{
return std::chrono::steady_clock::now().time_since_epoch();
}
void LRUEvictionPolicy::refresh()
{
while (!mExpiringBlockHeap.empty())
{
auto const block = *mExpiringBlockHeap.begin();
if (block->getExpirationTime() > getTime())
{
break;
}
auto const id = block->getBlockId();
auto const level = getCacheLevel(block);
mExpiringBlockHeap.erase(mExpiringBlockHeap.begin());
if (mFreeBlockIterators[id] != std::nullopt)
{
// This is already in another queue. Delete it, and bring it down to the default queue
mFreeQueues[level][getPriorityIdx(block->getPriority())].erase(*mFreeBlockIterators[id]);
auto& q = mFreeQueues[level][getPriorityIdx(kDefaultPriority)];
mFreeBlockIterators[id] = q.insert(q.end(), block);
}
block->setPriority(kDefaultPriority);
}
}
} // namespace tensorrt_llm::batch_manager::eviction_policy