TensorRT-LLMs/cpp/tensorrt_llm/plugins/lruPlugin/lruPlugin.cpp
2025-03-11 21:13:42 +08:00

432 lines
16 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lruPlugin.h"
#include "tensorrt_llm/common/assert.h"
using namespace nvinfer1;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::common;
using tensorrt_llm::plugins::lruPluginCreator;
using tensorrt_llm::plugins::lruPlugin;
static char const* LRU_PLUGIN_VERSION{"1"};
static char const* LRU_PLUGIN_NAME{"LRU"};
PluginFieldCollection lruPluginCreator::mFC{};
std::vector<nvinfer1::PluginField> lruPluginCreator::mPluginAttributes;
lruPlugin::lruPlugin(int dim, int block_size, nvinfer1::DataType type, bool removePadding, bool pagedState,
bool yEnabled, bool yBiasEnabled, bool fuseGateEnabled, bool gateBiasEnabled)
: mDim(dim)
, mBlockSize(block_size)
, mType(type)
, mRemovePadding(removePadding)
, mPagedState(pagedState)
, mYEnabled(yEnabled)
, mYBiasEnabled(yBiasEnabled)
, mFuseGateEnabled(fuseGateEnabled)
, mGateBiasEnabled(gateBiasEnabled)
{
TLLM_CHECK_WITH_INFO((mType == DataType::kBF16) || (mType == DataType::kFLOAT) || (mType == DataType::kHALF),
"Only support float, half, and bfloat16.");
}
// Parameterized constructor
lruPlugin::lruPlugin(void const* data, size_t length)
{
char const *d = reinterpret_cast<char const*>(data), *a = d;
read(d, mDim);
read(d, mBlockSize);
read(d, mType);
read(d, mRemovePadding);
read(d, mPagedState);
read(d, mYEnabled);
read(d, mYBiasEnabled);
read(d, mFuseGateEnabled);
read(d, mGateBiasEnabled);
TLLM_CHECK(d == a + length);
TLLM_CHECK_WITH_INFO((mType == DataType::kBF16) || (mType == DataType::kFLOAT) || (mType == DataType::kHALF),
"Only support float, half, and bfloat16.");
}
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* lruPlugin::clone() const noexcept
{
auto* plugin = new lruPlugin(mDim, mBlockSize, mType, mRemovePadding, mPagedState, mYEnabled, mYBiasEnabled,
mFuseGateEnabled, mGateBiasEnabled);
plugin->setPluginNamespace(mNamespace.c_str());
return plugin;
}
// Outputs
// output_tensor: [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding
// state: [batch_size, dim]
nvinfer1::DimsExprs lruPlugin::getOutputDimensions(
int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
{
if (outputIndex == 0)
{
return inputs[getXIdx()];
}
return inputs[getStateIdx()];
}
bool lruPlugin::supportsFormatCombination(
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept
{
if (pos == getHostRequestTypesIdx() || pos == getLastTokenIdsIdx() || (mPagedState && pos == getSlotMappingIdx()))
{
return inOut[pos].type == nvinfer1::DataType::kINT32;
}
else if (mPagedState && pos == getStateIdx())
{
return inOut[pos].type == nvinfer1::DataType::kINT64;
}
else if (pos == getStateIdx() || pos == (nbInputs + 1))
{
// Use float for both input and output state
return (inOut[pos].type == nvinfer1::DataType::kFLOAT) && (inOut[pos].format == TensorFormat::kLINEAR);
}
else
{
return (inOut[pos].type == mType) && (inOut[pos].format == TensorFormat::kLINEAR);
}
}
void lruPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
{
}
size_t lruPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept
{
return 0;
}
void lruPlugin::setLruParams(lruParams& params, const size_t batch, const size_t dim, const size_t block_size,
const size_t maxSeqLen, void* statePtr, void const* x, void const* gate, void const* gate_bias, void const* gate_x,
void const* gate_x_bias, void const* gate_a, void const* gate_a_bias, void const* y, void const* y_bias,
void const* A, int const* lastTokenIds, int const* slotMapping, void* out, bool removePadding)
{
// Reset the parameters
memset(&params, 0, sizeof(params));
params.batch = batch;
params.width = dim;
params.block_size = block_size;
params.max_seqlen = maxSeqLen;
params.remove_padding = removePadding;
// Set the pointers and strides.
params.A_ptr = const_cast<void*>(A);
params.x_ptr = const_cast<void*>(x);
params.y_ptr = const_cast<void*>(y);
params.y_bias_ptr = const_cast<void*>(y_bias);
params.gate_ptr = const_cast<void*>(gate);
params.gate_bias_ptr = const_cast<void*>(gate_bias);
params.gate_x_ptr = const_cast<void*>(gate_x);
params.gate_x_bias_ptr = const_cast<void*>(gate_x_bias);
params.gate_a_ptr = const_cast<void*>(gate_a);
params.gate_a_bias_ptr = const_cast<void*>(gate_a_bias);
params.state_ptr = statePtr;
params.out_ptr = out;
params.last_token_ids_ptr = lastTokenIds;
params.slot_mapping_ptr = slotMapping;
}
template <typename T>
int lruPlugin::enqueueImpl(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream)
{
// inputs
// 0. x [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding
// 1. A [dim]
// 2. state [batch_size, dim] or host [1] containing only pointer for paged_state
// 3. host_request_types [batch_size] int32. 0: context; 1: generation; 2: none.
// 4. last_token_ids [batch_size] int32
// 5. state_slot_mapping [batch_size] int32, optional for paged state
// 6. y [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding
// 7. y_bias [dim]
// 8. gate [batch_size, seq_len, 2 * dim] or [num_tokens, 2 * dim] for remove_input_padding
// 9. gate_bias [2 * dim]
// 10. gate_x [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding
// 11. gate_a [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding
// 12. gate_x_bias [2 * dim]
// 13. gate_a_bias [2 * dim]
// outputs
// 0. output_tensor [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding
// 1. state [batch_size, dim]
auto const batch_size = inputDesc[getHostRequestTypesIdx()].dims.d[0];
int max_seq_len;
if (mRemovePadding)
{
max_seq_len = -1;
}
else
{
max_seq_len = inputDesc[getXIdx()].dims.d[1];
}
// only support context or generation, not for both of them
RequestType const* reqTypes = static_cast<RequestType const*>(inputs[getHostRequestTypesIdx()]);
lruParams lru_params;
int const* slotMapping = mPagedState ? static_cast<int const*>(inputs[getSlotMappingIdx()]) : nullptr;
void const* y = mYEnabled ? inputs[getYIdx()] : nullptr;
void const* y_bias = mYBiasEnabled ? inputs[getYBiasIdx()] : nullptr;
void const* gate = mFuseGateEnabled ? inputs[getGateIdx()] : nullptr;
void const* gate_bias = (mFuseGateEnabled && mGateBiasEnabled) ? inputs[getGateBiasIdx()] : nullptr;
void const* gate_x = mFuseGateEnabled ? nullptr : inputs[getGateXIdx()];
void const* gate_a = mFuseGateEnabled ? nullptr : inputs[getGateAIdx()];
void const* gate_x_bias = (!mFuseGateEnabled && mGateBiasEnabled) ? inputs[getGateXBiasIdx()] : nullptr;
void const* gate_a_bias = (!mFuseGateEnabled && mGateBiasEnabled) ? inputs[getGateABiasIdx()] : nullptr;
void* statePtr = mPagedState ? *reinterpret_cast<void**>(const_cast<void*>(inputs[getStateIdx()])) : outputs[1];
setLruParams(lru_params, batch_size, mDim, mBlockSize, max_seq_len, statePtr, inputs[getXIdx()], gate, gate_bias,
gate_x, gate_x_bias, gate_a, gate_a_bias, y, y_bias, inputs[getAIdx()],
static_cast<int const*>(inputs[getLastTokenIdsIdx()]), slotMapping, outputs[0], mRemovePadding);
if (reqTypes[0] == RequestType::kCONTEXT)
{
invokeRGLRU<T>(lru_params, stream);
}
else if (reqTypes[0] == RequestType::kGENERATION)
{
invokeRGLRUUpdate<T>(lru_params, stream);
}
sync_check_cuda_error(stream);
return 0;
}
int lruPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept
{
if (isBuilding())
{
return 0;
}
if (mType == DataType::kHALF)
{
return enqueueImpl<half>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
else if (mType == DataType::kFLOAT)
{
return enqueueImpl<float>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
#ifdef ENABLE_BF16
else if (mType == DataType::kBF16)
{
return enqueueImpl<__nv_bfloat16>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
#endif
return 0;
}
// IPluginV2Ext Methods
nvinfer1::DataType lruPlugin::getOutputDataType(
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept
{
if (index == 0)
{
return inputTypes[getXIdx()];
}
else
{
return inputTypes[getStateIdx()];
}
}
// IPluginV2 Methods
char const* lruPlugin::getPluginType() const noexcept
{
return LRU_PLUGIN_NAME;
}
char const* lruPlugin::getPluginVersion() const noexcept
{
return LRU_PLUGIN_VERSION;
}
int lruPlugin::getNbOutputs() const noexcept
{
return mPagedState ? 1 : 2;
}
int lruPlugin::initialize() noexcept
{
return 0;
}
void lruPlugin::terminate() noexcept {}
size_t lruPlugin::getSerializationSize() const noexcept
{
return sizeof(mDim) + sizeof(mBlockSize) + sizeof(mType) + sizeof(mRemovePadding) + sizeof(mPagedState)
+ sizeof(mYEnabled) + sizeof(mYBiasEnabled) + sizeof(mFuseGateEnabled) + sizeof(mGateBiasEnabled);
}
void lruPlugin::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer), *a = d;
write(d, mDim);
write(d, mBlockSize);
write(d, mType);
write(d, mRemovePadding);
write(d, mPagedState);
write(d, mYEnabled);
write(d, mYBiasEnabled);
write(d, mFuseGateEnabled);
write(d, mGateBiasEnabled);
TLLM_CHECK(d == a + getSerializationSize());
}
void lruPlugin::destroy() noexcept
{
delete this;
}
///////////////
lruPluginCreator::lruPluginCreator()
{
// Fill PluginFieldCollection with PluginField arguments metadata
mPluginAttributes.clear();
mPluginAttributes.emplace_back(PluginField("dim", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("block_size", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("remove_input_padding", nullptr, PluginFieldType::kINT8));
mPluginAttributes.emplace_back(PluginField("paged_state", nullptr, PluginFieldType::kINT8));
mPluginAttributes.emplace_back(PluginField("y_enabled", nullptr, PluginFieldType::kINT8));
mPluginAttributes.emplace_back(PluginField("y_bias_enabled", nullptr, PluginFieldType::kINT8));
mPluginAttributes.emplace_back(PluginField("fuse_gate_enabled", nullptr, PluginFieldType::kINT8));
mPluginAttributes.emplace_back(PluginField("gate_bias_enabled", nullptr, PluginFieldType::kINT8));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
char const* lruPluginCreator::getPluginName() const noexcept
{
return LRU_PLUGIN_NAME;
}
char const* lruPluginCreator::getPluginVersion() const noexcept
{
return LRU_PLUGIN_VERSION;
}
PluginFieldCollection const* lruPluginCreator::getFieldNames() noexcept
{
return &mFC;
}
IPluginV2* lruPluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept
{
PluginField const* fields = fc->fields;
int dim{};
int block_size{};
bool removePadding{};
bool pagedState{};
bool yEnabled{};
bool yBiasEnabled{};
bool fuseGateEnabled{};
bool gateBiasEnabled{};
nvinfer1::DataType type{};
// Read configurations from each fields
for (int i = 0; i < fc->nbFields; ++i)
{
char const* attrName = fields[i].name;
if (!strcmp(attrName, "dim"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
dim = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
if (!strcmp(attrName, "block_size"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
block_size = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "type_id"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
type = static_cast<nvinfer1::DataType>(*(static_cast<nvinfer1::DataType const*>(fields[i].data)));
}
else if (!strcmp(attrName, "remove_input_padding"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
removePadding = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
else if (!strcmp(attrName, "paged_state"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
pagedState = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
else if (!strcmp(attrName, "y_enabled"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
yEnabled = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
else if (!strcmp(attrName, "y_bias_enabled"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
yBiasEnabled = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
else if (!strcmp(attrName, "fuse_gate_enabled"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
fuseGateEnabled = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
else if (!strcmp(attrName, "gate_bias_enabled"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
gateBiasEnabled = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
}
try
{
auto* obj = new lruPlugin(
dim, block_size, type, removePadding, pagedState, yEnabled, yBiasEnabled, fuseGateEnabled, gateBiasEnabled);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}
IPluginV2* lruPluginCreator::deserializePlugin(char const* name, void const* serialData, size_t serialLength) noexcept
{
// This object will be deleted when the network is destroyed, which will
// call lruPlugin::destroy()
try
{
auto* obj = new lruPlugin(serialData, serialLength);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}