mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* refactor: Move executor recv functions into classes Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * refactor: Enhance MPI logging and error handling - Updated MPI logging to include destination and tag information for better traceability during send and receive operations. - Added error checking for MPI_Wait and MPI_Cancel calls to ensure proper handling of multi-device requests. - Improved code structure for clarity and maintainability. Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * refactor: Introduce MpiTag enumeration and update MPI function signatures - Added a new header file `mpiTags.h` to define an enumeration for MPI tags, improving code readability and maintainability. - Updated function signatures in `mpiUtils.h` and `mpiUtils.cpp` to use the new `MpiTag` type instead of raw integers for tags. - Refactored various MPI calls across the codebase to utilize the new `MpiTag` enumeration, enhancing type safety and clarity. - Removed redundant MPI tag constants from several classes, streamlining the code. Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * fixup! refactor: Introduce MpiTag enumeration and update MPI function signatures Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * refactor: Rename tags for consistency Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> --------- Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
980 lines
34 KiB
C++
980 lines
34 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION &
|
|
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "allreducePlugin.h"
|
|
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/common/customAllReduceUtils.h"
|
|
#include "tensorrt_llm/common/dataType.h"
|
|
#include "tensorrt_llm/kernels/customAllReduceKernels.h"
|
|
#include "tensorrt_llm/kernels/userbuffers/ub_interface.h"
|
|
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
|
|
|
|
#include <nccl.h>
|
|
|
|
#include <unordered_set>
|
|
|
|
using namespace nvinfer1;
|
|
using tensorrt_llm::plugins::AllreducePluginCreator;
|
|
using tensorrt_llm::plugins::AllreducePlugin;
|
|
using tensorrt_llm::kernels::AllReduceFusionOp;
|
|
using tensorrt_llm::kernels::AllReduceStrategyType;
|
|
using tensorrt_llm::kernels::AllReduceStrategyConfig;
|
|
using tensorrt_llm::mpi::MpiTag;
|
|
|
|
static char const* ALLREDUCE_PLUGIN_VERSION{"1"};
|
|
static char const* ALLREDUCE_PLUGIN_NAME{"AllReduce"};
|
|
PluginFieldCollection AllreducePluginCreator::mFC{};
|
|
std::vector<nvinfer1::PluginField> AllreducePluginCreator::mPluginAttributes;
|
|
|
|
AllreducePlugin::AllreducePlugin(std::set<int> group, nvinfer1::DataType type, AllReduceStrategyType strategy,
|
|
AllReduceStrategyConfig config, AllReduceFusionOp op, int32_t counter, float eps, int8_t affine, int8_t bias,
|
|
int8_t scale)
|
|
: mGroup(std::move(group))
|
|
, mType(type)
|
|
, mStrategy(strategy)
|
|
, mConfig(config)
|
|
, mOp(op)
|
|
, mEps(eps)
|
|
, mAffine(affine)
|
|
, mBias(bias)
|
|
, mScale(scale)
|
|
{
|
|
check();
|
|
}
|
|
|
|
// Parameterized constructor
|
|
AllreducePlugin::AllreducePlugin(void const* data, size_t length)
|
|
{
|
|
char const *d = reinterpret_cast<char const*>(data), *a = d;
|
|
read(d, mType);
|
|
read(d, mStrategy);
|
|
read(d, mConfig);
|
|
read(d, mOp);
|
|
read(d, mEps);
|
|
read(d, mAffine);
|
|
read(d, mBias);
|
|
read(d, mScale);
|
|
mGroup.clear();
|
|
int groupItem = 0;
|
|
while (d != a + length)
|
|
{
|
|
read(d, groupItem);
|
|
mGroup.insert(groupItem);
|
|
}
|
|
TLLM_CHECK_WITH_INFO(d == a + length,
|
|
"Expected length (%d) != real length (%d). This is often "
|
|
"caused by using different TensorRT-LLM version to build "
|
|
"engine and run engine.",
|
|
(int) length, (int) (d - a));
|
|
check();
|
|
}
|
|
|
|
void AllreducePlugin::check() noexcept
|
|
{
|
|
if (mStrategy != AllReduceStrategyType::UB)
|
|
{
|
|
TLLM_CHECK(mOp != AllReduceFusionOp::LAST_PROCESS_FOR_UB);
|
|
}
|
|
}
|
|
|
|
// IPluginV2DynamicExt Methods
|
|
nvinfer1::IPluginV2DynamicExt* AllreducePlugin::clone() const noexcept
|
|
{
|
|
auto* plugin = new AllreducePlugin(*this);
|
|
plugin->setPluginNamespace(mNamespace.c_str());
|
|
return plugin;
|
|
}
|
|
|
|
nvinfer1::DimsExprs AllreducePlugin::getOutputDimensions(
|
|
int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
|
|
{
|
|
if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4 && mStrategy == AllReduceStrategyType::UB && mScale)
|
|
{
|
|
if (outputIndex == 0)
|
|
{
|
|
DimsExprs ret;
|
|
ret.nbDims = inputs[0].nbDims;
|
|
for (int di = 0; di < ret.nbDims; ++di)
|
|
{
|
|
ret.d[di] = inputs[0].d[di];
|
|
}
|
|
return ret;
|
|
}
|
|
else if (outputIndex == 2)
|
|
{
|
|
DimsExprs ret;
|
|
ret.nbDims = inputs[0].nbDims;
|
|
for (int di = 0; di < ret.nbDims; ++di)
|
|
{
|
|
ret.d[di] = inputs[0].d[di];
|
|
}
|
|
auto dimM = exprBuilder.operation(
|
|
DimensionOperation::kCEIL_DIV, *ret.d[ret.nbDims - 2], *exprBuilder.constant(128));
|
|
ret.d[ret.nbDims - 2] = exprBuilder.operation(DimensionOperation::kPROD, *dimM, *exprBuilder.constant(128));
|
|
ret.d[ret.nbDims - 1] = exprBuilder.operation(
|
|
DimensionOperation::kCEIL_DIV, *ret.d[ret.nbDims - 1], *exprBuilder.constant(16));
|
|
return ret;
|
|
}
|
|
}
|
|
return inputs[0];
|
|
}
|
|
|
|
bool AllreducePlugin::supportsFormatCombination(
|
|
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept
|
|
{
|
|
int base_inputs = 0;
|
|
if (mStrategy == AllReduceStrategyType::NCCL || mStrategy == AllReduceStrategyType::UB)
|
|
{
|
|
base_inputs = 1;
|
|
}
|
|
else
|
|
{
|
|
base_inputs = 2;
|
|
}
|
|
int fusion_op_extra_inputs = 0;
|
|
int scale_idx = 0;
|
|
if (mOp != AllReduceFusionOp::NONE)
|
|
{
|
|
++fusion_op_extra_inputs;
|
|
if (mAffine)
|
|
{
|
|
if (mOp == AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM)
|
|
++fusion_op_extra_inputs;
|
|
++fusion_op_extra_inputs;
|
|
}
|
|
if (mBias)
|
|
{
|
|
++fusion_op_extra_inputs;
|
|
}
|
|
if (mScale)
|
|
{
|
|
scale_idx = base_inputs + fusion_op_extra_inputs;
|
|
++fusion_op_extra_inputs;
|
|
}
|
|
}
|
|
|
|
TLLM_CHECK(nbInputs == (base_inputs + fusion_op_extra_inputs));
|
|
|
|
if (mStrategy != AllReduceStrategyType::NCCL && mStrategy != AllReduceStrategyType::UB && pos == 1)
|
|
{
|
|
return (inOut[pos].type == nvinfer1::DataType::kINT64) && (inOut[pos].format == TensorFormat::kLINEAR);
|
|
}
|
|
if (mStrategy == AllReduceStrategyType::UB)
|
|
{
|
|
if (mScale && pos == scale_idx)
|
|
{
|
|
return (inOut[pos].type == nvinfer1::DataType::kFLOAT) && (inOut[pos].format == TensorFormat::kLINEAR);
|
|
}
|
|
if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4)
|
|
{
|
|
if (pos == nbInputs)
|
|
{
|
|
return (inOut[pos].type == nvinfer1::DataType::kFP4) && (inOut[pos].format == TensorFormat::kLINEAR);
|
|
}
|
|
if (pos == (nbInputs + 2))
|
|
{
|
|
return (inOut[pos].type == nvinfer1::DataType::kFP8) && (inOut[pos].format == TensorFormat::kLINEAR);
|
|
}
|
|
}
|
|
if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_FP8)
|
|
{
|
|
if (pos == nbInputs)
|
|
{
|
|
return (inOut[pos].type == nvinfer1::DataType::kFP8) && (inOut[pos].format == TensorFormat::kLINEAR);
|
|
}
|
|
}
|
|
}
|
|
return (inOut[pos].type == mType) && (inOut[pos].format == TensorFormat::kLINEAR);
|
|
}
|
|
|
|
void AllreducePlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
|
|
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
|
|
{
|
|
}
|
|
|
|
size_t AllreducePlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
|
|
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
AllReduceStrategyType AllreducePlugin::selectImplementation(
|
|
size_t messageSize, int worldSize, nvinfer1::DataType type) noexcept
|
|
{
|
|
bool const isAuto = (mStrategy == AllReduceStrategyType::AUTO);
|
|
|
|
bool const forceDeterministic = common::getEnvForceDeterministicAllReduce();
|
|
if (!mIsP2PSupported)
|
|
{
|
|
if (!isAuto)
|
|
{
|
|
TLLM_LOG_INFO("Since Peer to Peer not supported, fallback to AllReduceStrategy: NCCL");
|
|
}
|
|
else if (forceDeterministic)
|
|
{
|
|
TLLM_LOG_WARNING(
|
|
"Since Peer to Peer not supported, fallback to AllReduceStrategy: NCCL. NCCL might produce "
|
|
"non-deterministic results.");
|
|
}
|
|
return AllReduceStrategyType::NCCL;
|
|
}
|
|
|
|
if (isAuto && !mIsNVLINKSupported && !forceDeterministic)
|
|
{
|
|
return AllReduceStrategyType::NCCL;
|
|
}
|
|
|
|
auto const maxWorkspaceSize = utils::customAllReduceUtils::getMaxRequiredWorkspaceSize(worldSize);
|
|
|
|
AllReduceStrategyType strat = AllReduceStrategyType::NCCL;
|
|
auto const messageSizeBytes = messageSize * common::getDTypeSize(type);
|
|
|
|
if (messageSizeBytes <= maxWorkspaceSize)
|
|
{
|
|
// In some instances, the two-shot strategy has exhibited significant performance issues.
|
|
// As a temporary measure, we have disabled the two-shot strategy.
|
|
// TODO: remove this WAR after https://nvbugspro.nvidia.com/bug/4718747 is fixed.
|
|
if (!isAuto)
|
|
{
|
|
strat = mStrategy;
|
|
}
|
|
else if (forceDeterministic)
|
|
{
|
|
strat = AllReduceStrategyType::ONESHOT;
|
|
}
|
|
else if (worldSize <= 2)
|
|
{
|
|
strat = AllReduceStrategyType::ONESHOT;
|
|
}
|
|
else if (worldSize <= 4)
|
|
{
|
|
if (messageSizeBytes < 1 * 1000 * 1000)
|
|
{
|
|
strat = AllReduceStrategyType::ONESHOT;
|
|
}
|
|
else
|
|
{
|
|
strat = AllReduceStrategyType::NCCL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (messageSizeBytes < 500 * 1000)
|
|
{
|
|
strat = AllReduceStrategyType::ONESHOT;
|
|
}
|
|
else
|
|
{
|
|
strat = AllReduceStrategyType::NCCL;
|
|
}
|
|
}
|
|
|
|
if (!kernels::configurationSupported(strat, messageSize, worldSize, type))
|
|
{
|
|
if (!isAuto)
|
|
{
|
|
TLLM_LOG_WARNING("Since not aligned, fallback to AllReduceStrategy: NCCL");
|
|
}
|
|
else if (forceDeterministic)
|
|
{
|
|
TLLM_LOG_WARNING(
|
|
"Since not aligned, fallback to AllReduceStrategy: NCCL. NCCL might produce "
|
|
"non-deterministic results.");
|
|
}
|
|
strat = AllReduceStrategyType::NCCL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!isAuto)
|
|
{
|
|
TLLM_LOG_WARNING("Since messageSize > maxWorkspace, fallback to AllReduceStrategy: NCCL");
|
|
}
|
|
else if (forceDeterministic)
|
|
{
|
|
TLLM_LOG_WARNING(
|
|
"Since messageSize > maxWorkspace, fallback to AllReduceStrategy: NCCL. NCCL might produce "
|
|
"non-deterministic results.");
|
|
}
|
|
strat = AllReduceStrategyType::NCCL;
|
|
}
|
|
|
|
return strat;
|
|
}
|
|
|
|
int AllreducePlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
|
|
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept
|
|
{
|
|
if (isBuilding())
|
|
{
|
|
return 0;
|
|
}
|
|
size_t size = 1;
|
|
for (int i = 0; i < inputDesc[0].dims.nbDims; ++i)
|
|
{
|
|
size *= inputDesc[0].dims.d[i];
|
|
}
|
|
|
|
kernels::AllReduceStrategyType runtimeStrategy;
|
|
|
|
static char* forceNcclAllReduceStrategyChar = std::getenv("FORCE_NCCL_ALL_REDUCE_STRATEGY");
|
|
bool forceNcclAllReduceStrategy = (forceNcclAllReduceStrategyChar != nullptr);
|
|
if (forceNcclAllReduceStrategy || mStrategy == AllReduceStrategyType::NCCL)
|
|
{
|
|
runtimeStrategy = AllReduceStrategyType::NCCL;
|
|
}
|
|
else if (mStrategy == AllReduceStrategyType::UB)
|
|
{
|
|
runtimeStrategy = AllReduceStrategyType::UB;
|
|
}
|
|
else
|
|
{
|
|
runtimeStrategy = selectImplementation(size, mGroup.size(), mType);
|
|
}
|
|
|
|
// Log runtime strategy
|
|
auto const rank = COMM_SESSION.getRank();
|
|
switch (runtimeStrategy)
|
|
{
|
|
case AllReduceStrategyType::NCCL:
|
|
{
|
|
TLLM_LOG_DEBUG("AllReducePlugin strategy for rank %d: NCCL", rank);
|
|
break;
|
|
}
|
|
case AllReduceStrategyType::ONESHOT:
|
|
{
|
|
TLLM_LOG_DEBUG("AllReducePlugin strategy for rank %d: ONESHOT", rank);
|
|
break;
|
|
}
|
|
case AllReduceStrategyType::TWOSHOT:
|
|
{
|
|
TLLM_LOG_DEBUG("AllReducePlugin strategy for rank %d: TWOSHOT", rank);
|
|
break;
|
|
}
|
|
case AllReduceStrategyType::UB:
|
|
{
|
|
TLLM_LOG_DEBUG("AllReducePlugin strategy for rank %d: UB", rank);
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
|
|
if (runtimeStrategy == AllReduceStrategyType::NCCL)
|
|
{
|
|
if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM || mOp == AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM)
|
|
{
|
|
NCCLCHECK(ncclAllReduce(inputs[0], outputs[1], size, (*getDtypeMap())[mType], ncclSum, *mNcclComm, stream));
|
|
tensorrt_llm::kernels::AllReduceParams params;
|
|
int fusion_ptr_idx = 0;
|
|
if (mStrategy == AllReduceStrategyType::NCCL)
|
|
{
|
|
fusion_ptr_idx = 1;
|
|
}
|
|
else
|
|
{
|
|
fusion_ptr_idx = 2;
|
|
}
|
|
params.fusion_params.bias_buffer = mBias ? inputs[fusion_ptr_idx++] : nullptr;
|
|
params.fusion_params.residual_buffer = inputs[fusion_ptr_idx++];
|
|
params.fusion_params.weight_buffer = mAffine ? inputs[fusion_ptr_idx++] : nullptr;
|
|
if (mOp == AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM)
|
|
{
|
|
params.fusion_params.weight_buffer_pre_residual_norm = mAffine ? inputs[fusion_ptr_idx++] : nullptr;
|
|
}
|
|
params.local_output_buffer_ptr = outputs[0];
|
|
params.elts_total = size;
|
|
params.fusion_params.hidden_size = inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1];
|
|
params.fusion_params.eps = mEps;
|
|
params.fusion_params.intermediate_buffer = outputs[1];
|
|
TLLM_LOG_DEBUG("residualRmsNorm called");
|
|
tensorrt_llm::kernels::residualRmsNorm(params, mType, stream, mOp);
|
|
}
|
|
else
|
|
{
|
|
NCCLCHECK(ncclAllReduce(inputs[0], outputs[0], size, (*getDtypeMap())[mType], ncclSum, *mNcclComm, stream));
|
|
}
|
|
}
|
|
else if (runtimeStrategy == AllReduceStrategyType::UB)
|
|
{
|
|
TLLM_CHECK(!mBias);
|
|
|
|
size_t dtype_size = tensorrt_llm::common::getDTypeSize(mType);
|
|
int hidden_size = inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1];
|
|
|
|
TLLM_CHECK_WITH_INFO(tensorrt_llm::runtime::ub::ub_is_initialized(), "UserBuffer has not been initialized!");
|
|
auto ub_buffer0 = tensorrt_llm::runtime::ub::ub_get(0);
|
|
auto ub_buffer1 = tensorrt_llm::runtime::ub::ub_get(1);
|
|
TLLM_CHECK(inputs[0] == ub_buffer0.addr);
|
|
auto ub_comm = tensorrt_llm::runtime::ub::ub_comm();
|
|
if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_FP8)
|
|
{
|
|
TLLM_CHECK(mAffine);
|
|
TLLM_CHECK(mScale);
|
|
TLLM_CHECK(outputs[0] == ub_buffer1.addr);
|
|
void* residual = const_cast<void*>(inputs[1]);
|
|
void* gamma = const_cast<void*>(inputs[2]);
|
|
float* scale = const_cast<float*>(reinterpret_cast<float const*>(inputs[3]));
|
|
tensorrt_llm::kernels::ub::allreduce2_userbuff_inplace_rmsnorm_quant_launcher(ub_buffer0.handle, 0,
|
|
ub_buffer1.handle, 0, size, hidden_size, nullptr, gamma, mEps, scale, residual, outputs[1], mType,
|
|
ub_comm, stream);
|
|
}
|
|
else if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4)
|
|
{
|
|
auto ub_buffer2 = tensorrt_llm::runtime::ub::ub_get(2);
|
|
TLLM_CHECK(mAffine);
|
|
TLLM_CHECK(mScale);
|
|
TLLM_CHECK(outputs[0] == ub_buffer1.addr);
|
|
TLLM_CHECK(outputs[2] == ub_buffer2.addr);
|
|
void* residual = const_cast<void*>(inputs[1]);
|
|
void* gamma = const_cast<void*>(inputs[2]);
|
|
float* scale = const_cast<float*>(reinterpret_cast<float const*>(inputs[3]));
|
|
tensorrt_llm::kernels::ub::allreduce2_userbuff_inplace_rmsnorm_quant_fp4_launcher(ub_buffer0.handle, 0,
|
|
ub_buffer1.handle, 0, ub_buffer2.handle, 0, size, hidden_size, nullptr, gamma, mEps, scale, residual,
|
|
outputs[1], mType, ub_comm, stream);
|
|
}
|
|
else if (mOp == AllReduceFusionOp::LAST_PROCESS_FOR_UB)
|
|
{
|
|
TLLM_CHECK(outputs[1] == ub_buffer1.addr);
|
|
void* residual = const_cast<void*>(inputs[1]);
|
|
tensorrt_llm::kernels::ub::allreduce2_userbuff_inplace_launcher(
|
|
ub_buffer0.handle, 0, size, mType, ub_comm, stream);
|
|
tensorrt_llm::kernels::ub::allgather2_userbuff_residual_launcher(
|
|
ub_buffer1.handle, 0, size, hidden_size, residual, mType, ub_comm, stream);
|
|
TLLM_CUDA_CHECK(
|
|
cudaMemcpyAsync(outputs[0], ub_buffer0.addr, size * dtype_size, cudaMemcpyDeviceToDevice, stream));
|
|
}
|
|
else if (mOp == AllReduceFusionOp::NONE)
|
|
{
|
|
tensorrt_llm::kernels::ub::allreduce2_userbuff_inplace_launcher(
|
|
ub_buffer0.handle, 0, size, mType, ub_comm, stream);
|
|
TLLM_CUDA_CHECK(
|
|
cudaMemcpyAsync(outputs[0], ub_buffer0.addr, size * dtype_size, cudaMemcpyDeviceToDevice, stream));
|
|
}
|
|
else
|
|
{
|
|
TLLM_CHECK_WITH_INFO(false, "Unsupported UB allreduce fusion op");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
auto const tpSize = mGroup.size();
|
|
int tpRank = 0;
|
|
for (auto const& currentRank : mGroup)
|
|
{
|
|
if (rank == currentRank)
|
|
break;
|
|
++tpRank;
|
|
}
|
|
|
|
int token_num = size / inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1];
|
|
int hidden_size = inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1];
|
|
auto params = tensorrt_llm::kernels::AllReduceParams::deserialize(
|
|
reinterpret_cast<int64_t*>(const_cast<void*>(inputs[1])), tpSize, tpRank, mType, token_num, hidden_size,
|
|
mOp);
|
|
|
|
params.local_output_buffer_ptr = outputs[0];
|
|
params.local_input_buffer_ptr = inputs[0];
|
|
params.elts_total = size;
|
|
|
|
int fusion_ptr_idx = 2;
|
|
params.fusion_params.bias_buffer = mBias ? inputs[fusion_ptr_idx++] : nullptr;
|
|
params.fusion_params.residual_buffer = inputs[fusion_ptr_idx++];
|
|
params.fusion_params.weight_buffer = mAffine ? inputs[fusion_ptr_idx++] : nullptr;
|
|
if (mOp == AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM)
|
|
params.fusion_params.weight_buffer_pre_residual_norm = mAffine ? inputs[fusion_ptr_idx++] : nullptr;
|
|
params.fusion_params.hidden_size = hidden_size;
|
|
params.fusion_params.eps = mEps;
|
|
params.fusion_params.intermediate_buffer = outputs[1];
|
|
if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM)
|
|
{
|
|
for (size_t i = 0; i < tpSize; ++i)
|
|
{
|
|
params.fusion_params.lamport_peer_comm_buffer_ptrs[i]
|
|
= reinterpret_cast<void**>(const_cast<void*>(inputs[1]))[tpSize * 4 + i];
|
|
params.fusion_params.lamport_peer_comm_buffer_ptrs[i + tensorrt_llm::kernels::MAX_RANKS_PER_NODE]
|
|
= reinterpret_cast<void**>(const_cast<void*>(inputs[1]))[tpSize * 5 + i];
|
|
params.fusion_params.lamport_peer_comm_buffer_ptrs[i + tensorrt_llm::kernels::MAX_RANKS_PER_NODE * 2]
|
|
= reinterpret_cast<void**>(const_cast<void*>(inputs[1]))[tpSize * 6 + i];
|
|
}
|
|
}
|
|
TLLM_LOG_DEBUG("customAllReduce called");
|
|
tensorrt_llm::kernels::customAllReduce(params, mType, runtimeStrategy, mConfig, mOp, stream);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// IPluginV2Ext Methods
|
|
nvinfer1::DataType AllreducePlugin::getOutputDataType(
|
|
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept
|
|
{
|
|
TLLM_CHECK(index < getNbOutputs());
|
|
if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4)
|
|
{
|
|
if (index == 0)
|
|
{
|
|
return nvinfer1::DataType::kFP4;
|
|
}
|
|
else if (index == 2)
|
|
{
|
|
return nvinfer1::DataType::kFP8;
|
|
}
|
|
}
|
|
if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_FP8)
|
|
{
|
|
if (index == 0)
|
|
{
|
|
return nvinfer1::DataType::kFP8;
|
|
}
|
|
}
|
|
return inputTypes[0];
|
|
}
|
|
|
|
// IPluginV2 Methods
|
|
|
|
char const* AllreducePlugin::getPluginType() const noexcept
|
|
{
|
|
return ALLREDUCE_PLUGIN_NAME;
|
|
}
|
|
|
|
char const* AllreducePlugin::getPluginVersion() const noexcept
|
|
{
|
|
return ALLREDUCE_PLUGIN_VERSION;
|
|
}
|
|
|
|
int AllreducePlugin::getNbOutputs() const noexcept
|
|
{
|
|
if (mOp == AllReduceFusionOp::NONE)
|
|
{
|
|
return 1;
|
|
}
|
|
else if (mOp == AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4)
|
|
{
|
|
return 3;
|
|
}
|
|
else
|
|
{
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
bool AllreducePlugin::isCustomAllReduceSupported(int ranks_per_node) const noexcept
|
|
{
|
|
constexpr bool isCudaVersionSupported =
|
|
#if defined(CUDART_VERSION) && CUDART_VERSION >= 11020
|
|
true;
|
|
#else
|
|
false;
|
|
#endif
|
|
|
|
return isCudaVersionSupported && (ranks_per_node % 2 == 0)
|
|
&& (static_cast<size_t>(ranks_per_node) <= kernels::MAX_RANKS_PER_NODE) && (ranks_per_node > 0);
|
|
}
|
|
|
|
class NvmlManager
|
|
{
|
|
public:
|
|
NvmlManager()
|
|
{
|
|
NVML_CHECK(nvmlInit());
|
|
}
|
|
|
|
~NvmlManager()
|
|
{
|
|
NVML_CHECK(nvmlShutdown());
|
|
}
|
|
};
|
|
|
|
std::set<int> getLocalGroup(std::set<int> const& group)
|
|
{
|
|
auto const myRank = COMM_SESSION.getRank();
|
|
auto const myLocalRank = LOCAL_COMM_SESSION.getRank();
|
|
auto const localSize = LOCAL_COMM_SESSION.getSize();
|
|
|
|
std::vector<int32_t> ranks(localSize, 0);
|
|
std::vector<int32_t> localRanks(localSize, 0);
|
|
if (group.size() >= static_cast<size_t>(localSize))
|
|
{
|
|
LOCAL_COMM_SESSION.allgather(&myRank, ranks.data(), 1, tensorrt_llm::mpi::MpiType::kINT32);
|
|
LOCAL_COMM_SESSION.allgather(&myLocalRank, localRanks.data(), 1, tensorrt_llm::mpi::MpiType::kINT32);
|
|
}
|
|
else
|
|
{
|
|
if (myRank == *group.begin())
|
|
{
|
|
ranks.clear();
|
|
int rank;
|
|
ranks.push_back(myRank);
|
|
for (auto it = std::next(std::begin(group), 1); it != group.end(); ++it)
|
|
{
|
|
COMM_SESSION.recvValue(rank, *it, MpiTag::kDefault);
|
|
ranks.push_back(rank);
|
|
}
|
|
for (auto it = std::next(std::begin(group), 1); it != group.end(); ++it)
|
|
{
|
|
COMM_SESSION.send(ranks.data(), localSize, tensorrt_llm::mpi::MpiType::kINT32, *it, MpiTag::kDefault);
|
|
}
|
|
|
|
localRanks.clear();
|
|
localRanks.push_back(myLocalRank);
|
|
for (auto it = std::next(std::begin(group), 1); it != group.end(); ++it)
|
|
{
|
|
COMM_SESSION.recvValue(rank, *it, MpiTag::kDefault);
|
|
localRanks.push_back(rank);
|
|
}
|
|
for (auto it = std::next(std::begin(group), 1); it != group.end(); ++it)
|
|
{
|
|
COMM_SESSION.send(
|
|
localRanks.data(), localSize, tensorrt_llm::mpi::MpiType::kINT32, *it, MpiTag::kDefault);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
COMM_SESSION.sendValue(myRank, *group.begin(), MpiTag::kDefault);
|
|
COMM_SESSION.recv(
|
|
ranks.data(), localSize, tensorrt_llm::mpi::MpiType::kINT32, *group.begin(), MpiTag::kDefault);
|
|
|
|
COMM_SESSION.sendValue(myLocalRank, *group.begin(), MpiTag::kDefault);
|
|
COMM_SESSION.recv(
|
|
localRanks.data(), localSize, tensorrt_llm::mpi::MpiType::kINT32, *group.begin(), MpiTag::kDefault);
|
|
}
|
|
}
|
|
|
|
std::set<int> localGroup;
|
|
for (size_t i = 0; i < ranks.size(); ++i)
|
|
{
|
|
auto rank = ranks[i];
|
|
if (group.find(rank) != group.end())
|
|
{
|
|
localGroup.insert(localRanks[i]);
|
|
}
|
|
}
|
|
return localGroup;
|
|
}
|
|
|
|
void AllreducePlugin::initGroupTopology() noexcept
|
|
{
|
|
static std::map<std::set<int>, std::tuple<bool, bool>> cache;
|
|
if (cache.find(mGroup) != cache.end())
|
|
{
|
|
auto [isNVLINKSupported, isP2PSupported] = cache[mGroup];
|
|
mIsNVLINKSupported = isNVLINKSupported;
|
|
mIsP2PSupported = isP2PSupported;
|
|
return;
|
|
}
|
|
setGroupTopology();
|
|
cache[mGroup] = {mIsNVLINKSupported, mIsP2PSupported};
|
|
}
|
|
|
|
void AllreducePlugin::setGroupTopology() noexcept
|
|
{
|
|
auto const rank = COMM_SESSION.getRank();
|
|
TLLM_LOG_INFO("Detecting local TP group for rank %d", rank);
|
|
std::set<int> localGroup = getLocalGroup(mGroup);
|
|
if (mGroup.size() != localGroup.size())
|
|
{
|
|
mIsP2PSupported = false;
|
|
mIsNVLINKSupported = false;
|
|
TLLM_LOG_INFO("Found inter-node TP group for rank %d", rank);
|
|
return;
|
|
}
|
|
TLLM_LOG_INFO("TP group is intra-node for rank %d", rank);
|
|
|
|
NvmlManager nvmlManager;
|
|
std::unordered_set<int> visitedDevice;
|
|
mIsP2PSupported = true;
|
|
mIsNVLINKSupported = true;
|
|
|
|
// Use cudaDeviceCanAccessPeer to determine whether p2p is supported,
|
|
// and use nvml to determine whether there are nvlink links between ranks.
|
|
for (int firstDeviceId : localGroup)
|
|
{
|
|
for (int secondDeviceId : localGroup)
|
|
{
|
|
if (firstDeviceId == secondDeviceId || visitedDevice.find(secondDeviceId) != visitedDevice.end())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
int canAccessPeer = 0;
|
|
TLLM_CUDA_CHECK(cudaDeviceCanAccessPeer(&canAccessPeer, firstDeviceId, secondDeviceId));
|
|
|
|
if (!canAccessPeer)
|
|
{
|
|
mIsP2PSupported = false;
|
|
mIsNVLINKSupported = false;
|
|
|
|
return;
|
|
}
|
|
|
|
nvmlDevice_t firstDevice;
|
|
NVML_CHECK(nvmlDeviceGetHandleByIndex(firstDeviceId, &firstDevice));
|
|
|
|
bool isNVLINK = false;
|
|
|
|
for (unsigned int link = 0; link < NVML_NVLINK_MAX_LINKS; link++)
|
|
{
|
|
nvmlPciInfo_t remotePciInfo;
|
|
if (nvmlDeviceGetNvLinkRemotePciInfo_v2(firstDevice, link, &remotePciInfo) != NVML_SUCCESS)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
nvmlDevice_t remoteDevice;
|
|
auto const result = nvmlDeviceGetHandleByPciBusId_v2(remotePciInfo.busId, &remoteDevice);
|
|
|
|
if (result == NVML_SUCCESS)
|
|
{
|
|
// Two GPUs are connected directly through nvlink
|
|
unsigned int remoteDeviceId;
|
|
NVML_CHECK(nvmlDeviceGetIndex(remoteDevice, &remoteDeviceId));
|
|
|
|
if (remoteDeviceId == static_cast<unsigned int>(secondDeviceId))
|
|
{
|
|
isNVLINK = true;
|
|
}
|
|
}
|
|
else if (result == NVML_ERROR_NOT_FOUND)
|
|
{
|
|
// Maybe Two GPUs are connected via nvswitch,
|
|
// now remotePciInfo represents the pci information of nvswitch,
|
|
// determine whether nvlink is supported by whether two GPUs are connected to the same nvswitch.
|
|
nvmlDevice_t secondDevice;
|
|
NVML_CHECK(nvmlDeviceGetHandleByIndex(secondDeviceId, &secondDevice));
|
|
|
|
for (unsigned int secondLink = 0; secondLink < NVML_NVLINK_MAX_LINKS; secondLink++)
|
|
{
|
|
nvmlPciInfo_t secondRemotePciInfo;
|
|
if (nvmlDeviceGetNvLinkRemotePciInfo_v2(secondDevice, secondLink, &secondRemotePciInfo)
|
|
!= NVML_SUCCESS)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(remotePciInfo.busId, secondRemotePciInfo.busId) == 0)
|
|
{
|
|
isNVLINK = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
NVML_CHECK(result);
|
|
}
|
|
|
|
if (isNVLINK)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
mIsNVLINKSupported &= isNVLINK;
|
|
}
|
|
visitedDevice.insert(firstDeviceId);
|
|
}
|
|
}
|
|
|
|
int AllreducePlugin::initialize() noexcept
|
|
{
|
|
if (isBuilding())
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s start for rank %d", __PRETTY_FUNCTION__, COMM_SESSION.getRank());
|
|
mNcclComm = getComm(mGroup);
|
|
if (mStrategy != AllReduceStrategyType::NCCL)
|
|
{
|
|
initGroupTopology();
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s stop for rank %d", __PRETTY_FUNCTION__, COMM_SESSION.getRank());
|
|
return 0;
|
|
}
|
|
|
|
void AllreducePlugin::terminate() noexcept {}
|
|
|
|
size_t AllreducePlugin::getSerializationSize() const noexcept
|
|
{
|
|
return sizeof(int) * mGroup.size() + sizeof(mType) + sizeof(mStrategy) + sizeof(mConfig) + sizeof(mOp)
|
|
+ sizeof(mEps) + sizeof(mAffine) + sizeof(mBias) + sizeof(mScale);
|
|
}
|
|
|
|
void AllreducePlugin::serialize(void* buffer) const noexcept
|
|
{
|
|
char *d = static_cast<char*>(buffer), *a = d;
|
|
write(d, mType);
|
|
write(d, mStrategy);
|
|
write(d, mConfig);
|
|
write(d, mOp);
|
|
write(d, mEps);
|
|
write(d, mAffine);
|
|
write(d, mBias);
|
|
write(d, mScale);
|
|
for (auto it = mGroup.begin(); it != mGroup.end(); ++it)
|
|
{
|
|
write(d, *it);
|
|
}
|
|
TLLM_CHECK(d == a + getSerializationSize());
|
|
}
|
|
|
|
void AllreducePlugin::destroy() noexcept
|
|
{
|
|
// This gets called when the network containing plugin is destroyed
|
|
delete this;
|
|
}
|
|
|
|
///////////////
|
|
|
|
AllreducePluginCreator::AllreducePluginCreator()
|
|
{
|
|
// Fill PluginFieldCollection with PluginField arguments metadata
|
|
mPluginAttributes.clear();
|
|
mPluginAttributes.emplace_back(PluginField("group", nullptr, PluginFieldType::kINT32));
|
|
mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32));
|
|
mPluginAttributes.emplace_back(PluginField("strategy", nullptr, PluginFieldType::kINT8));
|
|
mPluginAttributes.emplace_back(PluginField("config", nullptr, PluginFieldType::kINT8));
|
|
mPluginAttributes.emplace_back(PluginField("fusion_op", nullptr, PluginFieldType::kINT8));
|
|
mPluginAttributes.emplace_back(PluginField("counter", nullptr, PluginFieldType::kINT32));
|
|
mPluginAttributes.emplace_back(PluginField("eps", nullptr, PluginFieldType::kFLOAT32));
|
|
mPluginAttributes.emplace_back(PluginField("affine", nullptr, PluginFieldType::kINT8));
|
|
mPluginAttributes.emplace_back(PluginField("bias", nullptr, PluginFieldType::kINT8));
|
|
mPluginAttributes.emplace_back(PluginField("scale", nullptr, PluginFieldType::kINT8));
|
|
mFC.nbFields = mPluginAttributes.size();
|
|
mFC.fields = mPluginAttributes.data();
|
|
}
|
|
|
|
char const* AllreducePluginCreator::getPluginName() const noexcept
|
|
{
|
|
return ALLREDUCE_PLUGIN_NAME;
|
|
}
|
|
|
|
char const* AllreducePluginCreator::getPluginVersion() const noexcept
|
|
{
|
|
return ALLREDUCE_PLUGIN_VERSION;
|
|
}
|
|
|
|
PluginFieldCollection const* AllreducePluginCreator::getFieldNames() noexcept
|
|
{
|
|
return &mFC;
|
|
}
|
|
|
|
IPluginV2* AllreducePluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept
|
|
{
|
|
PluginField const* fields = fc->fields;
|
|
std::set<int> group;
|
|
nvinfer1::DataType type{};
|
|
AllReduceStrategyType strategy{};
|
|
AllReduceStrategyConfig config{};
|
|
AllReduceFusionOp fusion_op{};
|
|
int32_t counter{};
|
|
float eps{};
|
|
int8_t affine{};
|
|
int8_t bias{};
|
|
int8_t scale{};
|
|
// Read configurations from each fields
|
|
for (int i = 0; i < fc->nbFields; ++i)
|
|
{
|
|
char const* attrName = fields[i].name;
|
|
if (!strcmp(attrName, "group"))
|
|
{
|
|
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
|
|
auto const* r = static_cast<int const*>(fields[i].data);
|
|
for (int j = 0; j < fields[i].length; ++j)
|
|
{
|
|
group.insert(*r);
|
|
++r;
|
|
}
|
|
}
|
|
else if (!strcmp(attrName, "type_id"))
|
|
{
|
|
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
|
|
type = static_cast<nvinfer1::DataType>(*(static_cast<nvinfer1::DataType const*>(fields[i].data)));
|
|
}
|
|
else if (!strcmp(attrName, "strategy"))
|
|
{
|
|
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
|
|
strategy = static_cast<AllReduceStrategyType>(*static_cast<int8_t const*>(fields[i].data));
|
|
}
|
|
else if (!strcmp(attrName, "config"))
|
|
{
|
|
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
|
|
config = static_cast<AllReduceStrategyConfig>(*static_cast<int8_t const*>(fields[i].data));
|
|
}
|
|
else if (!strcmp(attrName, "fusion_op"))
|
|
{
|
|
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
|
|
fusion_op = static_cast<AllReduceFusionOp>(*static_cast<int8_t const*>(fields[i].data));
|
|
}
|
|
else if (!strcmp(attrName, "counter"))
|
|
{
|
|
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
|
|
counter = *static_cast<int32_t const*>(fields[i].data);
|
|
}
|
|
else if (!strcmp(attrName, "eps"))
|
|
{
|
|
TLLM_CHECK(fields[i].type == PluginFieldType::kFLOAT32);
|
|
eps = *static_cast<float const*>(fields[i].data);
|
|
}
|
|
else if (!strcmp(attrName, "affine"))
|
|
{
|
|
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
|
|
affine = *static_cast<int8_t const*>(fields[i].data);
|
|
}
|
|
else if (!strcmp(attrName, "bias"))
|
|
{
|
|
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
|
|
bias = *static_cast<int8_t const*>(fields[i].data);
|
|
}
|
|
else if (!strcmp(attrName, "scale"))
|
|
{
|
|
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
|
|
scale = *static_cast<int8_t const*>(fields[i].data);
|
|
}
|
|
}
|
|
try
|
|
{
|
|
auto* obj = new AllreducePlugin(group, type, strategy, config, fusion_op, counter, eps, affine, bias, scale);
|
|
obj->setPluginNamespace(mNamespace.c_str());
|
|
return obj;
|
|
}
|
|
catch (std::exception const& e)
|
|
{
|
|
caughtError(e);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
IPluginV2* AllreducePluginCreator::deserializePlugin(
|
|
char const* name, void const* serialData, size_t serialLength) noexcept
|
|
{
|
|
// This object will be deleted when the network is destroyed, which will
|
|
// call AllreducePlugin::destroy()
|
|
try
|
|
{
|
|
auto* obj = new AllreducePlugin(serialData, serialLength);
|
|
obj->setPluginNamespace(mNamespace.c_str());
|
|
return obj;
|
|
}
|
|
catch (std::exception const& e)
|
|
{
|
|
caughtError(e);
|
|
}
|
|
return nullptr;
|
|
}
|