mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
131 lines
5.1 KiB
Python
131 lines
5.1 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import json
|
|
import os
|
|
from typing import Iterable, List, Optional, Union
|
|
|
|
import click
|
|
import datasets
|
|
import numpy as np
|
|
|
|
from .. import LLM as PyTorchLLM
|
|
from .._tensorrt_engine import LLM
|
|
from ..llmapi import RequestOutput
|
|
from ..logger import logger
|
|
from ..sampling_params import GuidedDecodingParams, SamplingParams
|
|
from .interface import Evaluator
|
|
|
|
|
|
class JsonModeEval(Evaluator):
|
|
|
|
def __init__(self,
|
|
dataset_path: Optional[str] = None,
|
|
num_samples: Optional[int] = None,
|
|
random_seed: int = 0,
|
|
apply_chat_template: bool = True,
|
|
system_prompt: Optional[str] = None):
|
|
if not apply_chat_template:
|
|
raise ValueError(
|
|
f"{self.__class__.__name__} requires apply_chat_template=True.")
|
|
super().__init__(random_seed=random_seed,
|
|
apply_chat_template=apply_chat_template,
|
|
system_prompt=system_prompt)
|
|
if dataset_path is None:
|
|
dataset_path = "NousResearch/json-mode-eval"
|
|
self.data = datasets.load_dataset(dataset_path,
|
|
split="train",
|
|
trust_remote_code=True)
|
|
self.data = self.data.shuffle(random_seed)
|
|
if num_samples is None:
|
|
self.num_samples = self.data.num_rows
|
|
else:
|
|
self.num_samples = min(num_samples, self.data.num_rows)
|
|
|
|
def generate_samples(self) -> Iterable[tuple]:
|
|
for i, sample in enumerate(self.data):
|
|
if i >= self.num_samples:
|
|
break
|
|
schema = sample["schema"]
|
|
if os.environ.get("TRTLLM_XGUIDANCE_LENIENT") == "1":
|
|
schema = json.loads(schema)
|
|
schema["x-guidance"] = {"lenient": True}
|
|
schema = json.dumps(schema)
|
|
sampling_args = {
|
|
"guided_decoding": GuidedDecodingParams(json=schema)
|
|
}
|
|
yield sample["prompt"], sampling_args, sample["completion"]
|
|
|
|
def compute_score(self, outputs: List[RequestOutput],
|
|
references: List[str]) -> float:
|
|
all_corrections = []
|
|
for output, ref in zip(outputs, references):
|
|
try:
|
|
output_json = json.loads(output.outputs[0].text)
|
|
except json.JSONDecodeError:
|
|
all_corrections.append(False)
|
|
continue
|
|
ref_json = json.loads(ref)
|
|
all_corrections.append(output_json == ref_json)
|
|
|
|
acc = np.mean(all_corrections) * 100
|
|
logger.info(
|
|
f"JSON Mode Eval accuracy: {acc:.2f} ({len(all_corrections)})")
|
|
return acc
|
|
|
|
@click.command("json_mode_eval")
|
|
@click.option("--dataset_path",
|
|
type=str,
|
|
default=None,
|
|
help="The path to JSON Mode Eval dataset. "
|
|
"If unspecified, the dataset is downloaded from HF hub.")
|
|
@click.option(
|
|
"--num_samples",
|
|
type=int,
|
|
default=None,
|
|
help="Number of samples to run the evaluation; None means full dataset."
|
|
)
|
|
@click.option("--random_seed",
|
|
type=int,
|
|
default=0,
|
|
help="Random seed for dataset processing.")
|
|
@click.option("--system_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="System prompt.")
|
|
@click.option("--max_input_length",
|
|
type=int,
|
|
default=1024,
|
|
help="Maximum prompt length.")
|
|
@click.option("--max_output_length",
|
|
type=int,
|
|
default=512,
|
|
help="Maximum generation length.")
|
|
@click.pass_context
|
|
@staticmethod
|
|
def command(ctx, dataset_path: Optional[str], num_samples: int,
|
|
random_seed: int, system_prompt: Optional[str],
|
|
max_input_length: int, max_output_length: int) -> None:
|
|
llm: Union[LLM, PyTorchLLM] = ctx.obj
|
|
sampling_params = SamplingParams(
|
|
max_tokens=max_output_length,
|
|
truncate_prompt_tokens=max_input_length)
|
|
evaluator = JsonModeEval(dataset_path,
|
|
num_samples=num_samples,
|
|
random_seed=random_seed,
|
|
apply_chat_template=True,
|
|
system_prompt=system_prompt)
|
|
evaluator.evaluate(llm, sampling_params)
|
|
llm.shutdown()
|