TensorRT-LLMs/tests/integration/defs/examples/test_mamba.py
xinhe-nv 263c6c0ad0
test: skip post blackwell (#6357)
Signed-off-by: Xin He (SW-GPU) <200704525+xinhe-nv@users.noreply.github.com>
2025-08-01 13:10:14 -04:00

124 lines
5.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytest
from defs.common import (convert_weights, generate_summary_cmd, venv_check_call,
venv_mpi_check_call)
from defs.conftest import get_sm_version, skip_post_blackwell
from defs.trt_test_alternative import check_call
# skip trt flow cases on post-Blackwell-Ultra
if get_sm_version() >= 103:
pytest.skip(
"TRT workflow tests are not supported on post Blackwell-Ultra architecture",
allow_module_level=True)
@pytest.mark.parametrize("gemm_plugin", [True, False],
ids=["enable_gemm_plugin", "disable_gemm_plugin"])
@pytest.mark.parametrize("dtype", ['bfloat16', 'float16'])
@pytest.mark.parametrize("mamba_model_root", [
pytest.param('mamba-130m', marks=skip_post_blackwell), 'mamba-2.8b',
'mamba-1.4b', 'mamba-790m', 'mamba-370m', 'mamba2-130m', 'mamba2-2.7b',
'mamba2-1.3b', 'mamba2-780m', 'mamba2-370m',
pytest.param('mamba-codestral-7B-v0.1', marks=skip_post_blackwell)
],
indirect=True)
def test_llm_mamba_1gpu(mamba_example_root, mamba_model_root,
llm_gptneox_model_root, llm_mathstral_model_root,
llm_datasets_root, llm_rouge_root, llm_venv,
gemm_plugin, dtype, cmodel_dir, engine_dir):
"Build & Run mamba model with one gpu"
print("Build engines...")
model_name = os.path.basename(mamba_model_root)
model_dir = convert_weights(llm_venv=llm_venv,
example_root=mamba_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=mamba_model_root,
data_type=dtype)
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
"--paged_kv_cache=disable",
"--max_batch_size=8",
]
if gemm_plugin:
build_cmd.append("--gemm_plugin=auto")
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print(f'Run {model_name}...')
tokenizer_dir = llm_mathstral_model_root if model_name == "mamba-codestral-7B-v0.1" else llm_gptneox_model_root
summary_cmd = generate_summary_cmd(mamba_example_root,
hf_model_dir=mamba_model_root,
tokenizer_dir=tokenizer_dir,
data_type=dtype,
engine_dir=engine_dir,
batch_size=8,
tensorrt_llm_rouge1_threshold="13.5",
dataset_dir=llm_datasets_root,
rouge_dir=llm_rouge_root)
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.parametrize("mamba_model_root", ['mamba-codestral-7B-v0.1'],
indirect=True)
def test_llm_mamba2_2gpu(mamba_example_root, mamba_model_root,
llm_gptneox_model_root, llm_mathstral_model_root,
llm_datasets_root, llm_rouge_root, llm_venv,
cmodel_dir, engine_dir):
"Build & Run mamba2 model with two gpus"
print("Build engines...")
model_name = mamba_model_root.split('/')[-1]
model_dir = convert_weights(llm_venv=llm_venv,
example_root=mamba_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=mamba_model_root,
data_type='float16',
tp_size=2)
build_cmd = [
"trtllm-build",
"--gemm_plugin=auto",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
"--paged_kv_cache=disable",
"--max_batch_size=8",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print(f'Run {model_name}...')
tokenizer_dir = llm_mathstral_model_root
summary_cmd = generate_summary_cmd(mamba_example_root,
hf_model_dir=mamba_model_root,
tokenizer_dir=tokenizer_dir,
data_type='float16',
engine_dir=engine_dir,
batch_size=8,
tensorrt_llm_rouge1_threshold="19.0",
dataset_dir=llm_datasets_root,
rouge_dir=llm_rouge_root)
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "2", "--allow-run-as-root"],
summary_cmd)