mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Yi Wang <yi.wang.2005@gmail.com> Co-authored-by: lkm2835 <lkm2835@gmail.com>
835 lines
34 KiB
Python
835 lines
34 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from dataclasses import asdict, dataclass
|
|
from enum import IntEnum
|
|
from typing import List, Optional, Type, Union
|
|
|
|
import numpy as np
|
|
import tensorrt as trt
|
|
import torch
|
|
|
|
from tensorrt_llm._utils import (get_init_params, str_dtype_to_torch,
|
|
str_dtype_to_trt)
|
|
from tensorrt_llm.layers.lora import LoraParams
|
|
|
|
from .._common import default_net, default_trtnet
|
|
from .._utils import int32_array
|
|
from ..functional import (AllReduceFusionParams, _add_plugin_info,
|
|
_create_tensor, allreduce, cast, concat, constant,
|
|
div, expand, gather_nd, is_gated_activation,
|
|
non_gated_version, nonzero, repeat_interleave,
|
|
scatter_nd, shape, softmax, split, sum, topk)
|
|
from ..layers import MLP, GatedMLP
|
|
from ..mapping import Mapping
|
|
from ..module import Module, ModuleList
|
|
from ..parameter import Parameter
|
|
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
|
|
from ..quantization import QuantMode
|
|
from ..quantization.functional import postprocess_weight_only, quantize
|
|
from .linear import RowLinear
|
|
|
|
activation_str_to_int_map = {
|
|
# [WARNING] Keep the below in sync with cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_kernels.h
|
|
"gelu": 0,
|
|
"gelu_new": 0,
|
|
"relu": 1,
|
|
"silu": 2,
|
|
"swiglu": 3,
|
|
"geglu": 4,
|
|
"identity": 5,
|
|
}
|
|
|
|
|
|
@dataclass
|
|
class MoeConfig:
|
|
|
|
class ExpertScaleNormalizationMode(IntEnum):
|
|
NONE = 0
|
|
RENORMALIZE = 1
|
|
SPARSE_MIXER = 2
|
|
|
|
num_experts: int = 0
|
|
top_k: int = 0
|
|
normalization_mode: ExpertScaleNormalizationMode = ExpertScaleNormalizationMode.RENORMALIZE
|
|
sparse_mixer_epsilon: float = 0.01
|
|
tp_mode: int = 0
|
|
|
|
def validate(self) -> "MoeConfig":
|
|
if (self.num_experts == 0) != (self.top_k == 0):
|
|
raise ValueError(
|
|
"Both or neither MoeConfig's num_experts and top_k must be set to 0"
|
|
)
|
|
return self
|
|
|
|
def has_moe(self) -> bool:
|
|
return self.num_experts > 1
|
|
|
|
@classmethod
|
|
def from_dict(cls, config: dict):
|
|
return cls(**config)
|
|
|
|
def to_dict(self):
|
|
return asdict(self)
|
|
|
|
|
|
def _moe_plugin(moe_config,
|
|
hidden_states,
|
|
routing,
|
|
finished,
|
|
expert_weights_1,
|
|
expert_weights_2,
|
|
expert_bias_1,
|
|
expert_bias_2,
|
|
expert_scale_1,
|
|
expert_scale_2,
|
|
expert_scale_3,
|
|
expert_scale_4,
|
|
act_scale,
|
|
hidden_size,
|
|
ffn_hidden_size,
|
|
act_fn,
|
|
dtype,
|
|
weight_dtype,
|
|
output_dtype,
|
|
lora_params: LoraParams,
|
|
lora_max_low_rank,
|
|
quant_mode=QuantMode(0),
|
|
tp_size=1,
|
|
ep_size=1,
|
|
tp_rank=0,
|
|
ep_rank=0):
|
|
if isinstance(dtype, str):
|
|
dtype = str_dtype_to_trt(dtype)
|
|
|
|
if isinstance(weight_dtype, str):
|
|
weight_dtype = str_dtype_to_trt(weight_dtype)
|
|
|
|
if isinstance(output_dtype, str):
|
|
output_dtype = str_dtype_to_trt(output_dtype)
|
|
|
|
def from_parameter(x):
|
|
if isinstance(x, Parameter):
|
|
return x.value
|
|
return x
|
|
|
|
expert_weights_1 = from_parameter(expert_weights_1)
|
|
expert_weights_2 = from_parameter(expert_weights_2)
|
|
expert_bias_1 = from_parameter(expert_bias_1)
|
|
expert_bias_2 = from_parameter(expert_bias_2)
|
|
expert_scale_1 = from_parameter(expert_scale_1)
|
|
expert_scale_2 = from_parameter(expert_scale_2)
|
|
expert_scale_3 = from_parameter(expert_scale_3)
|
|
expert_scale_4 = from_parameter(expert_scale_4)
|
|
act_scale = from_parameter(act_scale)
|
|
|
|
# Create the plugin with our required state
|
|
num_experts = moe_config.num_experts
|
|
p_remove_input_padding = trt.PluginField(
|
|
"remove_input_padding",
|
|
np.array(np.int32(default_net().plugin_config.remove_input_padding),
|
|
dtype=np.int32), trt.PluginFieldType.INT32)
|
|
# We pass the full number of experts (not divided by ep_size) even for EP mode
|
|
p_num_experts = trt.PluginField("number_of_experts",
|
|
np.array(num_experts, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_top_k = trt.PluginField("top_k", np.array(moe_config.top_k,
|
|
dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_expert_hidden_size = trt.PluginField(
|
|
"expert_hidden_size", np.array(hidden_size, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_expert_inter_size = trt.PluginField(
|
|
"expert_inter_size", np.array(ffn_hidden_size, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_activation_type = trt.PluginField(
|
|
"activation_type",
|
|
np.array(activation_str_to_int_map[act_fn], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_type_id = trt.PluginField("type_id", np.array([int(dtype)],
|
|
dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
|
|
p_weight_type_id = trt.PluginField(
|
|
"weight_type_id", np.array([int(weight_dtype)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_output_type_id = trt.PluginField(
|
|
"output_type_id", np.array([int(output_dtype)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_quant_mode = trt.PluginField("quant_mode",
|
|
np.array([int(quant_mode)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_use_finished = trt.PluginField(
|
|
"use_finished", np.array([int(finished is not None)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_use_bias = trt.PluginField(
|
|
"use_bias", np.array([int(expert_bias_1 is not None)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_tp_size = trt.PluginField("tp_size", np.array(tp_size, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_tp_rank = trt.PluginField("tp_rank", np.array(tp_rank, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_ep_size = trt.PluginField("ep_size", np.array(ep_size, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_ep_rank = trt.PluginField("ep_rank", np.array(ep_rank, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_normalization_mode = trt.PluginField(
|
|
"normalization_mode",
|
|
np.array(moe_config.normalization_mode, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
|
|
p_sparse_mixer_epsilon = trt.PluginField(
|
|
"sparse_mixer_epsilon",
|
|
np.array(moe_config.sparse_mixer_epsilon, dtype=np.float32),
|
|
trt.PluginFieldType.FLOAT32)
|
|
|
|
p_force_determinism = trt.PluginField(
|
|
"force_determinism", np.array([int(False)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
|
|
use_lora = default_net().plugin_config.lora_plugin is not None
|
|
p_use_lora = trt.PluginField("use_lora", np.array([int(use_lora)],
|
|
np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
if use_lora:
|
|
p_lora_type_id = trt.PluginField(
|
|
"lora_type_id",
|
|
np.array([
|
|
int(str_dtype_to_trt(default_net().plugin_config.lora_plugin))
|
|
], np.int32), trt.PluginFieldType.INT32)
|
|
p_max_low_rank = trt.PluginField(
|
|
"max_low_rank", np.array(lora_max_low_rank, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
|
|
pfc_inputs = [
|
|
p_remove_input_padding, p_num_experts, p_top_k, p_expert_hidden_size,
|
|
p_expert_inter_size, p_activation_type, p_type_id, p_weight_type_id,
|
|
p_output_type_id, p_quant_mode, p_use_finished, p_use_bias, p_tp_size,
|
|
p_tp_rank, p_ep_size, p_ep_rank, p_normalization_mode,
|
|
p_sparse_mixer_epsilon, p_force_determinism, p_use_lora
|
|
]
|
|
|
|
if use_lora:
|
|
pfc_inputs += [p_lora_type_id, p_max_low_rank]
|
|
|
|
pfc = trt.PluginFieldCollection(pfc_inputs)
|
|
|
|
# Create the plugin with our constant inputs to the constructor
|
|
plugin_creator = trt.get_plugin_registry().get_plugin_creator(
|
|
'MixtureOfExperts', '1', TRT_LLM_PLUGIN_NAMESPACE)
|
|
assert plugin_creator is not None
|
|
moe_plugin = plugin_creator.create_plugin("mixture_of_experts", pfc)
|
|
|
|
# Instantiate the plugin with our specific inputs
|
|
plugin_inputs = [hidden_states, routing, expert_weights_1, expert_weights_2]
|
|
|
|
if expert_bias_1:
|
|
assert expert_bias_2
|
|
plugin_inputs += [expert_bias_1, expert_bias_2]
|
|
|
|
if finished is not None:
|
|
plugin_inputs += [finished]
|
|
|
|
# Add conditional inputs
|
|
if quant_mode.is_weight_only() or quant_mode.has_fp8_qdq():
|
|
assert expert_scale_1
|
|
assert expert_scale_2
|
|
plugin_inputs += [expert_scale_1, expert_scale_2]
|
|
|
|
# Add conditional inputs
|
|
if quant_mode.has_fp8_qdq():
|
|
assert expert_scale_3
|
|
plugin_inputs += [expert_scale_3]
|
|
|
|
if expert_scale_4 is not None:
|
|
assert quant_mode.has_fp8_qdq()
|
|
assert output_dtype == trt.fp8
|
|
plugin_inputs += [expert_scale_4]
|
|
|
|
if use_lora:
|
|
if quant_mode.has_fp8_qdq():
|
|
assert act_scale
|
|
plugin_inputs += [act_scale]
|
|
|
|
moe_h_4h_weight_ptrs = lora_params.get_runtime_params(
|
|
0, "moe_h_to_4h").lora_weights_pointers
|
|
moe_h_4h_lora_ranks = lora_params.get_runtime_params(
|
|
0, "moe_h_to_4h").lora_ranks
|
|
plugin_inputs += (moe_h_4h_weight_ptrs + moe_h_4h_lora_ranks)
|
|
|
|
moe_4h_h_weight_ptrs = lora_params.get_runtime_params(
|
|
0, "moe_4h_to_h").lora_weights_pointers
|
|
moe_4h_h_lora_ranks = lora_params.get_runtime_params(
|
|
0, "moe_4h_to_h").lora_ranks
|
|
plugin_inputs += (moe_4h_h_weight_ptrs + moe_4h_h_lora_ranks)
|
|
|
|
moe_gate_weight_ptrs = None
|
|
moe_gate_lora_ranks = None
|
|
if is_gated_activation(act_fn):
|
|
moe_gate_weight_ptrs = lora_params.get_runtime_params(
|
|
0, "moe_gate").lora_weights_pointers
|
|
moe_gate_lora_ranks = lora_params.get_runtime_params(
|
|
0, "moe_gate").lora_ranks
|
|
plugin_inputs += (moe_gate_weight_ptrs + moe_gate_lora_ranks)
|
|
|
|
host_request_types = lora_params.host_request_types
|
|
plugin_inputs += [host_request_types]
|
|
|
|
if default_net().plugin_config.remove_input_padding:
|
|
plugin_inputs += [lora_params.host_context_lengths]
|
|
|
|
plugin_inputs = [i.trt_tensor for i in plugin_inputs]
|
|
layer = default_trtnet().add_plugin_v2(plugin_inputs, moe_plugin)
|
|
_add_plugin_info(layer, plugin_creator, "mixture_of_experts", pfc)
|
|
if not default_net().strongly_typed:
|
|
for ii in range(layer.num_inputs):
|
|
if layer.get_input(ii).dtype == str_dtype_to_trt("int8"):
|
|
layer.get_input(ii).set_dynamic_range(-127, 127)
|
|
output = _create_tensor(layer.get_output(0), layer)
|
|
return output
|
|
|
|
|
|
# This exists so that MOE can have the same name format as a regular MLP, just with different shaped weight tensors
|
|
class MOEWeightWrapper(Module):
|
|
|
|
def __init__(self, in_features: int, out_features: int,
|
|
experts_per_node: int, quant_mode: QuantMode,
|
|
dtype: Union[str,
|
|
trt.DataType], weight_dtype: Union[str,
|
|
trt.DataType],
|
|
has_bias: bool, wrapper_tllm_to_externel_key_dict: dict,
|
|
tp_size: int, tp_dim: int):
|
|
super().__init__()
|
|
self.quant_mode = quant_mode
|
|
self.expert_shape = (experts_per_node, out_features, in_features)
|
|
self.dtype = dtype
|
|
self.weight_dtype = weight_dtype
|
|
self.has_bias = has_bias
|
|
self.tllm_to_externel_key_dict = wrapper_tllm_to_externel_key_dict
|
|
self.tp_size = tp_size
|
|
self.tp_dim = tp_dim
|
|
self.is_padded = False
|
|
|
|
if quant_mode.is_weight_only():
|
|
bytes_per_col_scale = 2 if quant_mode.is_int4_weight_only() else 1
|
|
# We use a different shape here because the quantized weights have their own layout
|
|
self.expert_shape = (experts_per_node, in_features,
|
|
out_features // bytes_per_col_scale)
|
|
self.per_channel_scale = Parameter(shape=(experts_per_node,
|
|
out_features),
|
|
dtype=dtype)
|
|
else:
|
|
self.register_parameter('per_channel_scale', None)
|
|
|
|
self.weight = Parameter(shape=self.expert_shape,
|
|
dtype=weight_dtype,
|
|
prefer_managed=True)
|
|
|
|
if has_bias:
|
|
self.bias = Parameter(shape=(experts_per_node, out_features),
|
|
dtype=dtype)
|
|
else:
|
|
self.register_parameter('bias', None)
|
|
|
|
if quant_mode.has_fp8_qdq():
|
|
self.activation_scaling_factor = Parameter(shape=(1, ),
|
|
dtype=trt.float32)
|
|
self.weights_scaling_factor = Parameter(shape=(experts_per_node, 1),
|
|
dtype=trt.float32)
|
|
else:
|
|
self.register_parameter('activation_scaling_factor', None)
|
|
self.register_parameter('weights_scaling_factor', None)
|
|
|
|
def postprocess(self, tllm_key, weights, **kwargs):
|
|
if tllm_key.endswith("weight"):
|
|
if isinstance(weights, torch.Tensor):
|
|
weights = [weights]
|
|
if "fc" in tllm_key:
|
|
weights = torch.cat([
|
|
torch.stack(weights[:len(weights) // 2]),
|
|
torch.stack(weights[len(weights) // 2:])
|
|
],
|
|
dim=-2)
|
|
elif "proj" in tllm_key:
|
|
weights = torch.stack(weights)
|
|
weights = weights.to(str_dtype_to_torch(self.dtype))
|
|
|
|
if not self.quant_mode.has_any_quant():
|
|
return weights
|
|
elif self.quant_mode.is_weight_only():
|
|
if "per_channel_scale" in tllm_key:
|
|
return {}
|
|
weights = weights.to(str_dtype_to_torch(self.dtype))
|
|
return postprocess_weight_only(
|
|
tllm_key, weights, torch.int8 if
|
|
self.quant_mode.is_int8_weight_only() else torch.quint4x2, self)
|
|
elif self.quant_mode.has_fp8_qdq():
|
|
if tllm_key.endswith("activation_scaling_factor"):
|
|
return 448.0 / weights
|
|
elif tllm_key.endswith("weights_scaling_factor"):
|
|
return 448.0 / weights
|
|
else:
|
|
return weights
|
|
|
|
|
|
class MixtureOfExperts(Module):
|
|
|
|
def __init__(self,
|
|
moe_config: MoeConfig,
|
|
hidden_size: int,
|
|
ffn_hidden_size: int,
|
|
hidden_act: str,
|
|
mapping: Mapping = Mapping(),
|
|
bias: bool = True,
|
|
dtype=None,
|
|
tp_group: List[int] = None,
|
|
tp_size: int = 1,
|
|
quant_mode=QuantMode(0),
|
|
use_all_reduce=True):
|
|
super().__init__()
|
|
|
|
self.moe_config = moe_config
|
|
self.num_experts = moe_config.num_experts
|
|
self.top_k = moe_config.top_k
|
|
|
|
self.hidden_act = hidden_act
|
|
self.hidden_size = hidden_size
|
|
self.ffn_hidden_size = ffn_hidden_size
|
|
self.expert_inter_size = ffn_hidden_size
|
|
self.dtype = dtype
|
|
self.weight_dtype = dtype
|
|
self.tp_group = tp_group
|
|
self.tp_size = tp_size
|
|
self.mapping = mapping
|
|
self.quant_mode = quant_mode
|
|
self.bias = bias
|
|
self.use_all_reduce = use_all_reduce
|
|
|
|
self.experts_per_node = self.num_experts
|
|
if self.mapping.has_moe_ep():
|
|
if self.num_experts % self.mapping.moe_ep_size != 0:
|
|
raise ValueError(
|
|
f"MixtureOfExperts - Number of experts {self.num_experts} is not a multiple of EP size {self.mapping.moe_ep_size}"
|
|
)
|
|
self.experts_per_node = self.experts_per_node // self.mapping.moe_ep_size
|
|
|
|
if self.mapping.has_moe_tp():
|
|
if self.ffn_hidden_size % self.mapping.moe_tp_size != 0:
|
|
raise ValueError(
|
|
f"MixtureOfExperts - FFN Hidden Size {self.ffn_hidden_size} is not a multiple of TP size {self.mapping.moe_tp_size}"
|
|
)
|
|
self.expert_inter_size = self.ffn_hidden_size // self.mapping.moe_tp_size
|
|
|
|
if quant_mode.has_fp8_qdq() and self.bias:
|
|
# TODO (dastokes) We will need to revisit this if we have a use case for it
|
|
raise ValueError(
|
|
f"MixtureOfExperts - Bias is not supported with FP8")
|
|
|
|
if quant_mode.is_weight_only():
|
|
self.weight_dtype = trt.int8
|
|
elif quant_mode.has_fp8_qdq():
|
|
self.weight_dtype = trt.fp8
|
|
|
|
rank_experts = self.mapping.ep_experts(self.num_experts)
|
|
self.wrapper_tllm_to_externel_key_dict = {
|
|
"mlp":
|
|
"block_sparse_moe",
|
|
"proj": [f"experts.{expert}.w2" for expert in rank_experts],
|
|
"fc": [f"experts.{expert}.w3" for expert in rank_experts] +
|
|
[f"experts.{expert}.w1" for expert in rank_experts]
|
|
}
|
|
|
|
# Since output dimension is usually low (in the order of 10s), no TP at
|
|
# all is more efficient as no allreduce required in the end.
|
|
# Note that if we see models that have large number of experts, we may
|
|
# need to consider add TP back here.
|
|
# TODO: Arctic has large # experts, we may need to add TP back here.
|
|
self.router = RowLinear(
|
|
hidden_size,
|
|
self.num_experts,
|
|
bias=False,
|
|
dtype=trt.
|
|
float32, # Routing is sensitive since it conditions what experts are used
|
|
tp_group=None,
|
|
tp_size=1,
|
|
strict_dtype=True)
|
|
self.router.tllm_to_externel_key_dict = {
|
|
"mlp": "block_sparse_moe",
|
|
"router": "gate"
|
|
}
|
|
|
|
self.init_experts()
|
|
|
|
self.max_low_rank = None
|
|
|
|
def init_experts(self):
|
|
# Note we use horizontal fusion for gated activation to do the operation in one GEMM invocation
|
|
# The left matrix is a linear projection (no activation applied)
|
|
# The right matrix is the gating value (activation applied)
|
|
# The naming convention is the inverse of GatedMLP, but the same as `tensorrt_llm/functional.py`
|
|
fc_out_size = self.expert_inter_size * 2 if is_gated_activation(
|
|
self.hidden_act) else self.expert_inter_size
|
|
|
|
self.fc = MOEWeightWrapper(self.hidden_size, fc_out_size,
|
|
self.experts_per_node, self.quant_mode,
|
|
self.dtype, self.weight_dtype, self.bias,
|
|
self.wrapper_tllm_to_externel_key_dict,
|
|
self.mapping.moe_tp_size, 0)
|
|
self.proj = MOEWeightWrapper(self.expert_inter_size, self.hidden_size,
|
|
self.experts_per_node, self.quant_mode,
|
|
self.dtype, self.weight_dtype, self.bias,
|
|
self.wrapper_tllm_to_externel_key_dict,
|
|
self.mapping.moe_tp_size, 1)
|
|
|
|
def forward(self,
|
|
hidden_states,
|
|
finished=None,
|
|
lora_layer_params=None,
|
|
reduce_fusion_params: Optional[AllReduceFusionParams] = None):
|
|
moe_router_lora_params = None
|
|
if lora_layer_params is not None:
|
|
moe_router_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "moe_router")
|
|
routing_input = cast(hidden_states, trt.float32)
|
|
routing = self.router(routing_input, moe_router_lora_params)
|
|
output = self.forward_experts(hidden_states, routing, finished,
|
|
lora_layer_params)
|
|
if self.use_all_reduce:
|
|
output = self.forward_allreduce(output, reduce_fusion_params)
|
|
return output
|
|
|
|
def forward_experts(self, hidden_states, routing, finished,
|
|
lora_layer_params):
|
|
|
|
if self.quant_mode.has_fp8_qdq():
|
|
assert self.fc.weight.value.dtype == trt.fp8, (
|
|
"mlp fc weight dtype should be fp8 in the fp8 quantization mode."
|
|
)
|
|
assert self.proj.weight.value.dtype == trt.fp8, (
|
|
"mlp proj weight dtype should be fp8 in the fp8 quantization mode."
|
|
)
|
|
hidden_states_quant = hidden_states
|
|
if hidden_states_quant.dtype != trt.fp8:
|
|
hidden_states_quant = quantize(
|
|
hidden_states, self.fc.activation_scaling_factor.value,
|
|
'fp8')
|
|
|
|
dtype_quant = trt.fp8
|
|
weight_dtype_quant = trt.fp8
|
|
|
|
fc1_dequant = self.fc.weights_scaling_factor.value * self.fc.activation_scaling_factor.value
|
|
fc2_quant = div(1.0, self.proj.activation_scaling_factor.value)
|
|
fc2_dequant = self.proj.weights_scaling_factor.value * self.proj.activation_scaling_factor.value
|
|
fc1_act_dequant = self.fc.activation_scaling_factor.value
|
|
|
|
scale_1 = fc1_dequant
|
|
scale_2 = fc2_quant
|
|
scale_3 = fc2_dequant
|
|
scale_4 = None
|
|
scale_5 = fc1_act_dequant
|
|
|
|
output_dtype_quant = self.dtype
|
|
|
|
if output_dtype_quant == trt.fp8 and scale_4 is None:
|
|
raise RuntimeError(
|
|
"Cannot output FP8 value without knowing quantization parameter"
|
|
)
|
|
|
|
else:
|
|
hidden_states_quant = hidden_states
|
|
dtype_quant = self.dtype
|
|
weight_dtype_quant = self.weight_dtype
|
|
output_dtype_quant = self.dtype
|
|
|
|
scale_1 = self.fc.per_channel_scale
|
|
scale_2 = self.proj.per_channel_scale
|
|
scale_3 = None
|
|
scale_4 = None
|
|
scale_5 = None
|
|
output = _moe_plugin(self.moe_config,
|
|
hidden_states_quant,
|
|
routing,
|
|
expert_weights_1=self.fc.weight.value,
|
|
expert_weights_2=self.proj.weight.value,
|
|
expert_bias_1=self.fc.bias,
|
|
expert_bias_2=self.proj.bias,
|
|
expert_scale_1=scale_1,
|
|
expert_scale_2=scale_2,
|
|
expert_scale_3=scale_3,
|
|
expert_scale_4=scale_4,
|
|
act_scale=scale_5,
|
|
finished=finished,
|
|
hidden_size=self.hidden_size,
|
|
ffn_hidden_size=self.expert_inter_size,
|
|
act_fn=self.hidden_act,
|
|
dtype=dtype_quant,
|
|
weight_dtype=weight_dtype_quant,
|
|
output_dtype=output_dtype_quant,
|
|
lora_params=lora_layer_params,
|
|
lora_max_low_rank=self.max_low_rank,
|
|
quant_mode=self.quant_mode,
|
|
tp_size=self.mapping.moe_tp_size,
|
|
tp_rank=self.mapping.moe_tp_rank,
|
|
ep_size=self.mapping.moe_ep_size,
|
|
ep_rank=self.mapping.moe_ep_rank)
|
|
|
|
return output
|
|
|
|
def forward_allreduce(
|
|
self, output,
|
|
reduce_fusion_params: Optional[AllReduceFusionParams]):
|
|
if self.tp_size > 1 and self.tp_group is not None:
|
|
output = allreduce(output,
|
|
self.tp_group,
|
|
reduce_fusion_params=reduce_fusion_params)
|
|
return output
|
|
|
|
def load_weights(self, moe: "MixtureOfExperts"):
|
|
'''
|
|
Load weights from base MOE layer
|
|
'''
|
|
raise NotImplementedError("Subclass shall override this")
|
|
|
|
def to(self,
|
|
moe_cls: Type["MixtureOfExperts"],
|
|
quant_config=None) -> "MixtureOfExperts":
|
|
from ..quantization.quantize import quantize
|
|
if isinstance(self, moe_cls):
|
|
return self
|
|
|
|
new_moe = moe_cls(**get_init_params(self))
|
|
# If config is not None, set quantization from config
|
|
if quant_config is not None:
|
|
quantize(new_moe, quant_config)
|
|
|
|
new_moe.load_weights(self)
|
|
new_moe.router = self.router
|
|
return new_moe
|
|
|
|
|
|
MOE = MixtureOfExperts
|
|
|
|
|
|
class MoeOOTB(MOE):
|
|
|
|
def init_experts(self):
|
|
if self.quant_mode.is_weight_only():
|
|
raise ValueError(
|
|
f"OOTB MOE does not support weight only quantization now, current quant mode: {self.quant_mode}"
|
|
)
|
|
ClsMLP = GatedMLP if is_gated_activation(self.hidden_act) else MLP
|
|
|
|
tp_size = 1
|
|
tp_group = None
|
|
self.experts = ModuleList([
|
|
ClsMLP(self.hidden_size, self.expert_inter_size,
|
|
non_gated_version(self.hidden_act), self.bias, self.dtype,
|
|
tp_group, tp_size, self.quant_mode)
|
|
for _ in range(self.experts_per_node)
|
|
])
|
|
|
|
def moe_to_expert_lora_params(self, lora_layer_params, expert_idx):
|
|
|
|
def get_params(module):
|
|
ranks = lora_layer_params.get_runtime_params(0,
|
|
module).lora_ranks[0]
|
|
weights_pointers = lora_layer_params.get_runtime_params(
|
|
0, module).lora_weights_pointers[0]
|
|
return ranks, weights_pointers
|
|
|
|
if lora_layer_params is None:
|
|
return None
|
|
fc_lora_ranks, fc_lora_weights_pointers = get_params("moe_h_to_4h")
|
|
proj_lora_ranks, proj_lora_weights_pointers = get_params("moe_4h_to_h")
|
|
gate_lora_ranks = None
|
|
gate_lora_weights_pointers = None
|
|
if is_gated_activation(self.hidden_act):
|
|
gate_lora_ranks, gate_lora_weights_pointers = get_params("moe_gate")
|
|
return LoraParams(
|
|
lora_ranks=[{
|
|
"mlp_h_to_4h_lora_ranks": fc_lora_ranks,
|
|
"mlp_4h_to_h_lora_ranks": proj_lora_ranks,
|
|
"mlp_gate_lora_ranks": gate_lora_ranks,
|
|
}],
|
|
lora_weights_pointers=[{
|
|
"mlp_h_to_4h_lora_weights_pointers":
|
|
fc_lora_weights_pointers,
|
|
"mlp_4h_to_h_lora_weights_pointers":
|
|
proj_lora_weights_pointers,
|
|
"mlp_gate_lora_weights_pointers":
|
|
gate_lora_weights_pointers,
|
|
}],
|
|
host_context_lengths=lora_layer_params.host_context_lengths,
|
|
max_encoder_context_length=lora_layer_params.
|
|
max_encoder_context_length,
|
|
host_request_types=lora_layer_params.host_request_types,
|
|
host_encoder_input_lengths=lora_layer_params.
|
|
host_encoder_input_lengths,
|
|
weight_index=expert_idx,
|
|
)
|
|
|
|
def forward_experts(self, hidden_states, routing, finished,
|
|
lora_layer_params):
|
|
# TODO: https://nvbugspro.nvidia.com/bug/4781396 after this nvbug is fixed, we will remove this check.
|
|
if lora_layer_params is not None:
|
|
for module in ["mlp_h_to_4h", "mlp_4h_to_h", "mlp_gate"]:
|
|
if lora_layer_params.get_runtime_params(0, module) is not None:
|
|
raise RuntimeError(
|
|
f"MoE OOTB does not support {module} LoRA module, please enable MoE plugin"
|
|
)
|
|
|
|
if self.moe_config.normalization_mode == MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE:
|
|
topk_values, topk_indices = topk(routing, self.top_k, dim=-1)
|
|
topk_values = softmax(topk_values, -1)
|
|
else:
|
|
router_probs = softmax(routing, -1)
|
|
topk_values, topk_indices = topk(router_probs, self.top_k, dim=-1)
|
|
|
|
hidden_size = shape(hidden_states, -1)
|
|
# [B*sq, hidden]
|
|
inputs_merged = hidden_states.view(concat([-1, hidden_size]))
|
|
flat_topk_indices = topk_indices.view(
|
|
concat([-1, shape(topk_indices, -1)]))
|
|
flat_topk_values = topk_values.view(concat([-1,
|
|
shape(topk_values, -1)]))
|
|
|
|
# Create output space
|
|
zero_buffer = inputs_merged * 0.0
|
|
output = zero_buffer
|
|
|
|
expert_indices_stack = []
|
|
indices_stack = []
|
|
# When topk indices are equal to expert index, the expert will inference the tokens.
|
|
# Bundle all indices and experts index, then do mask once.
|
|
for i, expert in enumerate(self.experts):
|
|
if self.mapping.has_moe_ep():
|
|
index = i + self.experts_per_node * self.mapping.moe_ep_rank
|
|
else:
|
|
index = i
|
|
expert_indices_stack.append(
|
|
flat_topk_indices.view(concat([1, shape(flat_topk_indices)])))
|
|
|
|
indices_stack.append(constant(int32_array(index)))
|
|
|
|
all_expert_indices = concat(expert_indices_stack, dim=0)
|
|
indices = expand(
|
|
concat(indices_stack).view(concat([len(self.experts), 1, 1])),
|
|
shape(all_expert_indices))
|
|
|
|
# Create all experts mask
|
|
all_expert_mask = all_expert_indices == indices
|
|
|
|
experts_weights = cast(
|
|
sum(flat_topk_values *
|
|
cast(all_expert_mask, flat_topk_values.dtype),
|
|
dim=-1,
|
|
keepdim=True), self.dtype)
|
|
|
|
all_expert_mask = cast(
|
|
sum(cast(all_expert_mask, flat_topk_values.dtype),
|
|
dim=-1,
|
|
keepdim=True), 'bool')
|
|
all_expert_mask = repeat_interleave(all_expert_mask, shape(output, -1),
|
|
2)
|
|
|
|
# split the mask and weights for each expert
|
|
experts_mask = split(all_expert_mask, 1, dim=0)
|
|
expert_weights = split(experts_weights, 1, dim=0)
|
|
|
|
for i, expert in enumerate(self.experts):
|
|
if self.mapping.has_moe_ep():
|
|
index = i + self.experts_per_node * self.mapping.moe_ep_rank
|
|
else:
|
|
index = i
|
|
# get mask token index
|
|
non_zero_index = nonzero(experts_mask[i].view(
|
|
concat([-1, hidden_size])))
|
|
non_zero_index = non_zero_index.transpose(1, 0)
|
|
input_for_expert = gather_nd(inputs_merged, non_zero_index, 0)
|
|
input_for_expert = input_for_expert.view(concat([-1, hidden_size]),
|
|
zero_is_placeholder=False)
|
|
|
|
# Expert inference
|
|
expert_output = expert(
|
|
input_for_expert,
|
|
lora_layer_params=self.moe_to_expert_lora_params(
|
|
lora_layer_params, index))
|
|
|
|
# scatter expert output to real position
|
|
expert_finialized_output = zero_buffer
|
|
expert_finialized_output = scatter_nd(
|
|
expert_finialized_output, non_zero_index,
|
|
expert_output.view([-1])) * expert_weights[i]
|
|
|
|
output += expert_finialized_output
|
|
|
|
output = output.view(shape(hidden_states))
|
|
|
|
return output
|
|
|
|
def load_weights(self, moe: MOE):
|
|
for i, expert in enumerate(self.experts):
|
|
is_gated_act = is_gated_activation(self.hidden_act)
|
|
# Gated weight pack in expert1 weights
|
|
# expert_weights_1
|
|
experts_weight_1_raw = moe.fc.weight.raw_value
|
|
fc1_weight_scale = None
|
|
fc1_activation_scale = None
|
|
fc2_weight_scale = None
|
|
fc2_activation_scale = None
|
|
|
|
if self.quant_mode.has_fp8_qdq():
|
|
fc1_weight_scale = moe.fc.weights_scaling_factor.raw_value
|
|
fc1_activation_scale = moe.fc.activation_scaling_factor.raw_value
|
|
fc2_weight_scale = moe.proj.weights_scaling_factor.raw_value
|
|
fc2_activation_scale = moe.proj.activation_scaling_factor.raw_value
|
|
|
|
if self.quant_mode.is_weight_only():
|
|
expert.fc.weight.value = experts_weight_1_raw[
|
|
i, :, -self.expert_inter_size:]
|
|
if is_gated_act:
|
|
expert.gate.weight.value = experts_weight_1_raw[
|
|
i, :, :self.expert_inter_size]
|
|
else:
|
|
expert.fc.weight.value = experts_weight_1_raw[
|
|
i, -self.expert_inter_size:, :]
|
|
if is_gated_act:
|
|
expert.gate.weight.value = experts_weight_1_raw[
|
|
i, :self.expert_inter_size, :]
|
|
|
|
if self.quant_mode.has_fp8_qdq():
|
|
expert.fc.activation_scaling_factor.value = fc1_activation_scale
|
|
expert.fc.weights_scaling_factor.value = fc1_weight_scale[i]
|
|
expert.proj.activation_scaling_factor.value = fc2_activation_scale
|
|
expert.proj.weights_scaling_factor.value = fc2_weight_scale[i]
|
|
if is_gated_act:
|
|
expert.gate.activation_scaling_factor.value = fc1_activation_scale
|
|
expert.gate.weights_scaling_factor.value = fc1_weight_scale[
|
|
i]
|
|
|
|
# expert_weights_2
|
|
experts_weight_2_raw = moe.proj.weight.raw_value
|
|
expert.proj.weight.value = experts_weight_2_raw[i, :, :]
|
|
|
|
has_bias = self.bias
|
|
if has_bias:
|
|
experts_bias_1_raw = moe.fc.bias.raw_value
|
|
expert.fc.bias.value = experts_bias_1_raw[
|
|
i, -self.expert_inter_size:]
|
|
experts_bias_2_raw = moe.proj.bias.raw_value
|
|
expert.proj.bias.value = experts_bias_2_raw[i, :]
|
|
if is_gated_act:
|
|
expert.gate.bias.value = experts_bias_1_raw[
|
|
i, :self.expert_inter_size]
|