TensorRT-LLMs/tensorrt_llm/layers/moe.py
Kaiyu Xie fe7dc6ad4e
Update TensorRT-LLM (#2230)
* Update TensorRT-LLM

---------

Co-authored-by: Yi Wang <yi.wang.2005@gmail.com>
Co-authored-by: lkm2835 <lkm2835@gmail.com>
2024-09-17 14:39:09 +08:00

835 lines
34 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import asdict, dataclass
from enum import IntEnum
from typing import List, Optional, Type, Union
import numpy as np
import tensorrt as trt
import torch
from tensorrt_llm._utils import (get_init_params, str_dtype_to_torch,
str_dtype_to_trt)
from tensorrt_llm.layers.lora import LoraParams
from .._common import default_net, default_trtnet
from .._utils import int32_array
from ..functional import (AllReduceFusionParams, _add_plugin_info,
_create_tensor, allreduce, cast, concat, constant,
div, expand, gather_nd, is_gated_activation,
non_gated_version, nonzero, repeat_interleave,
scatter_nd, shape, softmax, split, sum, topk)
from ..layers import MLP, GatedMLP
from ..mapping import Mapping
from ..module import Module, ModuleList
from ..parameter import Parameter
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
from ..quantization import QuantMode
from ..quantization.functional import postprocess_weight_only, quantize
from .linear import RowLinear
activation_str_to_int_map = {
# [WARNING] Keep the below in sync with cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_kernels.h
"gelu": 0,
"gelu_new": 0,
"relu": 1,
"silu": 2,
"swiglu": 3,
"geglu": 4,
"identity": 5,
}
@dataclass
class MoeConfig:
class ExpertScaleNormalizationMode(IntEnum):
NONE = 0
RENORMALIZE = 1
SPARSE_MIXER = 2
num_experts: int = 0
top_k: int = 0
normalization_mode: ExpertScaleNormalizationMode = ExpertScaleNormalizationMode.RENORMALIZE
sparse_mixer_epsilon: float = 0.01
tp_mode: int = 0
def validate(self) -> "MoeConfig":
if (self.num_experts == 0) != (self.top_k == 0):
raise ValueError(
"Both or neither MoeConfig's num_experts and top_k must be set to 0"
)
return self
def has_moe(self) -> bool:
return self.num_experts > 1
@classmethod
def from_dict(cls, config: dict):
return cls(**config)
def to_dict(self):
return asdict(self)
def _moe_plugin(moe_config,
hidden_states,
routing,
finished,
expert_weights_1,
expert_weights_2,
expert_bias_1,
expert_bias_2,
expert_scale_1,
expert_scale_2,
expert_scale_3,
expert_scale_4,
act_scale,
hidden_size,
ffn_hidden_size,
act_fn,
dtype,
weight_dtype,
output_dtype,
lora_params: LoraParams,
lora_max_low_rank,
quant_mode=QuantMode(0),
tp_size=1,
ep_size=1,
tp_rank=0,
ep_rank=0):
if isinstance(dtype, str):
dtype = str_dtype_to_trt(dtype)
if isinstance(weight_dtype, str):
weight_dtype = str_dtype_to_trt(weight_dtype)
if isinstance(output_dtype, str):
output_dtype = str_dtype_to_trt(output_dtype)
def from_parameter(x):
if isinstance(x, Parameter):
return x.value
return x
expert_weights_1 = from_parameter(expert_weights_1)
expert_weights_2 = from_parameter(expert_weights_2)
expert_bias_1 = from_parameter(expert_bias_1)
expert_bias_2 = from_parameter(expert_bias_2)
expert_scale_1 = from_parameter(expert_scale_1)
expert_scale_2 = from_parameter(expert_scale_2)
expert_scale_3 = from_parameter(expert_scale_3)
expert_scale_4 = from_parameter(expert_scale_4)
act_scale = from_parameter(act_scale)
# Create the plugin with our required state
num_experts = moe_config.num_experts
p_remove_input_padding = trt.PluginField(
"remove_input_padding",
np.array(np.int32(default_net().plugin_config.remove_input_padding),
dtype=np.int32), trt.PluginFieldType.INT32)
# We pass the full number of experts (not divided by ep_size) even for EP mode
p_num_experts = trt.PluginField("number_of_experts",
np.array(num_experts, dtype=np.int32),
trt.PluginFieldType.INT32)
p_top_k = trt.PluginField("top_k", np.array(moe_config.top_k,
dtype=np.int32),
trt.PluginFieldType.INT32)
p_expert_hidden_size = trt.PluginField(
"expert_hidden_size", np.array(hidden_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_expert_inter_size = trt.PluginField(
"expert_inter_size", np.array(ffn_hidden_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_activation_type = trt.PluginField(
"activation_type",
np.array(activation_str_to_int_map[act_fn], dtype=np.int32),
trt.PluginFieldType.INT32)
p_type_id = trt.PluginField("type_id", np.array([int(dtype)],
dtype=np.int32),
trt.PluginFieldType.INT32)
p_weight_type_id = trt.PluginField(
"weight_type_id", np.array([int(weight_dtype)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_output_type_id = trt.PluginField(
"output_type_id", np.array([int(output_dtype)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_quant_mode = trt.PluginField("quant_mode",
np.array([int(quant_mode)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_use_finished = trt.PluginField(
"use_finished", np.array([int(finished is not None)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_use_bias = trt.PluginField(
"use_bias", np.array([int(expert_bias_1 is not None)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_tp_size = trt.PluginField("tp_size", np.array(tp_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_tp_rank = trt.PluginField("tp_rank", np.array(tp_rank, dtype=np.int32),
trt.PluginFieldType.INT32)
p_ep_size = trt.PluginField("ep_size", np.array(ep_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_ep_rank = trt.PluginField("ep_rank", np.array(ep_rank, dtype=np.int32),
trt.PluginFieldType.INT32)
p_normalization_mode = trt.PluginField(
"normalization_mode",
np.array(moe_config.normalization_mode, dtype=np.int32),
trt.PluginFieldType.INT32)
p_sparse_mixer_epsilon = trt.PluginField(
"sparse_mixer_epsilon",
np.array(moe_config.sparse_mixer_epsilon, dtype=np.float32),
trt.PluginFieldType.FLOAT32)
p_force_determinism = trt.PluginField(
"force_determinism", np.array([int(False)], dtype=np.int32),
trt.PluginFieldType.INT32)
use_lora = default_net().plugin_config.lora_plugin is not None
p_use_lora = trt.PluginField("use_lora", np.array([int(use_lora)],
np.int32),
trt.PluginFieldType.INT32)
if use_lora:
p_lora_type_id = trt.PluginField(
"lora_type_id",
np.array([
int(str_dtype_to_trt(default_net().plugin_config.lora_plugin))
], np.int32), trt.PluginFieldType.INT32)
p_max_low_rank = trt.PluginField(
"max_low_rank", np.array(lora_max_low_rank, dtype=np.int32),
trt.PluginFieldType.INT32)
pfc_inputs = [
p_remove_input_padding, p_num_experts, p_top_k, p_expert_hidden_size,
p_expert_inter_size, p_activation_type, p_type_id, p_weight_type_id,
p_output_type_id, p_quant_mode, p_use_finished, p_use_bias, p_tp_size,
p_tp_rank, p_ep_size, p_ep_rank, p_normalization_mode,
p_sparse_mixer_epsilon, p_force_determinism, p_use_lora
]
if use_lora:
pfc_inputs += [p_lora_type_id, p_max_low_rank]
pfc = trt.PluginFieldCollection(pfc_inputs)
# Create the plugin with our constant inputs to the constructor
plugin_creator = trt.get_plugin_registry().get_plugin_creator(
'MixtureOfExperts', '1', TRT_LLM_PLUGIN_NAMESPACE)
assert plugin_creator is not None
moe_plugin = plugin_creator.create_plugin("mixture_of_experts", pfc)
# Instantiate the plugin with our specific inputs
plugin_inputs = [hidden_states, routing, expert_weights_1, expert_weights_2]
if expert_bias_1:
assert expert_bias_2
plugin_inputs += [expert_bias_1, expert_bias_2]
if finished is not None:
plugin_inputs += [finished]
# Add conditional inputs
if quant_mode.is_weight_only() or quant_mode.has_fp8_qdq():
assert expert_scale_1
assert expert_scale_2
plugin_inputs += [expert_scale_1, expert_scale_2]
# Add conditional inputs
if quant_mode.has_fp8_qdq():
assert expert_scale_3
plugin_inputs += [expert_scale_3]
if expert_scale_4 is not None:
assert quant_mode.has_fp8_qdq()
assert output_dtype == trt.fp8
plugin_inputs += [expert_scale_4]
if use_lora:
if quant_mode.has_fp8_qdq():
assert act_scale
plugin_inputs += [act_scale]
moe_h_4h_weight_ptrs = lora_params.get_runtime_params(
0, "moe_h_to_4h").lora_weights_pointers
moe_h_4h_lora_ranks = lora_params.get_runtime_params(
0, "moe_h_to_4h").lora_ranks
plugin_inputs += (moe_h_4h_weight_ptrs + moe_h_4h_lora_ranks)
moe_4h_h_weight_ptrs = lora_params.get_runtime_params(
0, "moe_4h_to_h").lora_weights_pointers
moe_4h_h_lora_ranks = lora_params.get_runtime_params(
0, "moe_4h_to_h").lora_ranks
plugin_inputs += (moe_4h_h_weight_ptrs + moe_4h_h_lora_ranks)
moe_gate_weight_ptrs = None
moe_gate_lora_ranks = None
if is_gated_activation(act_fn):
moe_gate_weight_ptrs = lora_params.get_runtime_params(
0, "moe_gate").lora_weights_pointers
moe_gate_lora_ranks = lora_params.get_runtime_params(
0, "moe_gate").lora_ranks
plugin_inputs += (moe_gate_weight_ptrs + moe_gate_lora_ranks)
host_request_types = lora_params.host_request_types
plugin_inputs += [host_request_types]
if default_net().plugin_config.remove_input_padding:
plugin_inputs += [lora_params.host_context_lengths]
plugin_inputs = [i.trt_tensor for i in plugin_inputs]
layer = default_trtnet().add_plugin_v2(plugin_inputs, moe_plugin)
_add_plugin_info(layer, plugin_creator, "mixture_of_experts", pfc)
if not default_net().strongly_typed:
for ii in range(layer.num_inputs):
if layer.get_input(ii).dtype == str_dtype_to_trt("int8"):
layer.get_input(ii).set_dynamic_range(-127, 127)
output = _create_tensor(layer.get_output(0), layer)
return output
# This exists so that MOE can have the same name format as a regular MLP, just with different shaped weight tensors
class MOEWeightWrapper(Module):
def __init__(self, in_features: int, out_features: int,
experts_per_node: int, quant_mode: QuantMode,
dtype: Union[str,
trt.DataType], weight_dtype: Union[str,
trt.DataType],
has_bias: bool, wrapper_tllm_to_externel_key_dict: dict,
tp_size: int, tp_dim: int):
super().__init__()
self.quant_mode = quant_mode
self.expert_shape = (experts_per_node, out_features, in_features)
self.dtype = dtype
self.weight_dtype = weight_dtype
self.has_bias = has_bias
self.tllm_to_externel_key_dict = wrapper_tllm_to_externel_key_dict
self.tp_size = tp_size
self.tp_dim = tp_dim
self.is_padded = False
if quant_mode.is_weight_only():
bytes_per_col_scale = 2 if quant_mode.is_int4_weight_only() else 1
# We use a different shape here because the quantized weights have their own layout
self.expert_shape = (experts_per_node, in_features,
out_features // bytes_per_col_scale)
self.per_channel_scale = Parameter(shape=(experts_per_node,
out_features),
dtype=dtype)
else:
self.register_parameter('per_channel_scale', None)
self.weight = Parameter(shape=self.expert_shape,
dtype=weight_dtype,
prefer_managed=True)
if has_bias:
self.bias = Parameter(shape=(experts_per_node, out_features),
dtype=dtype)
else:
self.register_parameter('bias', None)
if quant_mode.has_fp8_qdq():
self.activation_scaling_factor = Parameter(shape=(1, ),
dtype=trt.float32)
self.weights_scaling_factor = Parameter(shape=(experts_per_node, 1),
dtype=trt.float32)
else:
self.register_parameter('activation_scaling_factor', None)
self.register_parameter('weights_scaling_factor', None)
def postprocess(self, tllm_key, weights, **kwargs):
if tllm_key.endswith("weight"):
if isinstance(weights, torch.Tensor):
weights = [weights]
if "fc" in tllm_key:
weights = torch.cat([
torch.stack(weights[:len(weights) // 2]),
torch.stack(weights[len(weights) // 2:])
],
dim=-2)
elif "proj" in tllm_key:
weights = torch.stack(weights)
weights = weights.to(str_dtype_to_torch(self.dtype))
if not self.quant_mode.has_any_quant():
return weights
elif self.quant_mode.is_weight_only():
if "per_channel_scale" in tllm_key:
return {}
weights = weights.to(str_dtype_to_torch(self.dtype))
return postprocess_weight_only(
tllm_key, weights, torch.int8 if
self.quant_mode.is_int8_weight_only() else torch.quint4x2, self)
elif self.quant_mode.has_fp8_qdq():
if tllm_key.endswith("activation_scaling_factor"):
return 448.0 / weights
elif tllm_key.endswith("weights_scaling_factor"):
return 448.0 / weights
else:
return weights
class MixtureOfExperts(Module):
def __init__(self,
moe_config: MoeConfig,
hidden_size: int,
ffn_hidden_size: int,
hidden_act: str,
mapping: Mapping = Mapping(),
bias: bool = True,
dtype=None,
tp_group: List[int] = None,
tp_size: int = 1,
quant_mode=QuantMode(0),
use_all_reduce=True):
super().__init__()
self.moe_config = moe_config
self.num_experts = moe_config.num_experts
self.top_k = moe_config.top_k
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.expert_inter_size = ffn_hidden_size
self.dtype = dtype
self.weight_dtype = dtype
self.tp_group = tp_group
self.tp_size = tp_size
self.mapping = mapping
self.quant_mode = quant_mode
self.bias = bias
self.use_all_reduce = use_all_reduce
self.experts_per_node = self.num_experts
if self.mapping.has_moe_ep():
if self.num_experts % self.mapping.moe_ep_size != 0:
raise ValueError(
f"MixtureOfExperts - Number of experts {self.num_experts} is not a multiple of EP size {self.mapping.moe_ep_size}"
)
self.experts_per_node = self.experts_per_node // self.mapping.moe_ep_size
if self.mapping.has_moe_tp():
if self.ffn_hidden_size % self.mapping.moe_tp_size != 0:
raise ValueError(
f"MixtureOfExperts - FFN Hidden Size {self.ffn_hidden_size} is not a multiple of TP size {self.mapping.moe_tp_size}"
)
self.expert_inter_size = self.ffn_hidden_size // self.mapping.moe_tp_size
if quant_mode.has_fp8_qdq() and self.bias:
# TODO (dastokes) We will need to revisit this if we have a use case for it
raise ValueError(
f"MixtureOfExperts - Bias is not supported with FP8")
if quant_mode.is_weight_only():
self.weight_dtype = trt.int8
elif quant_mode.has_fp8_qdq():
self.weight_dtype = trt.fp8
rank_experts = self.mapping.ep_experts(self.num_experts)
self.wrapper_tllm_to_externel_key_dict = {
"mlp":
"block_sparse_moe",
"proj": [f"experts.{expert}.w2" for expert in rank_experts],
"fc": [f"experts.{expert}.w3" for expert in rank_experts] +
[f"experts.{expert}.w1" for expert in rank_experts]
}
# Since output dimension is usually low (in the order of 10s), no TP at
# all is more efficient as no allreduce required in the end.
# Note that if we see models that have large number of experts, we may
# need to consider add TP back here.
# TODO: Arctic has large # experts, we may need to add TP back here.
self.router = RowLinear(
hidden_size,
self.num_experts,
bias=False,
dtype=trt.
float32, # Routing is sensitive since it conditions what experts are used
tp_group=None,
tp_size=1,
strict_dtype=True)
self.router.tllm_to_externel_key_dict = {
"mlp": "block_sparse_moe",
"router": "gate"
}
self.init_experts()
self.max_low_rank = None
def init_experts(self):
# Note we use horizontal fusion for gated activation to do the operation in one GEMM invocation
# The left matrix is a linear projection (no activation applied)
# The right matrix is the gating value (activation applied)
# The naming convention is the inverse of GatedMLP, but the same as `tensorrt_llm/functional.py`
fc_out_size = self.expert_inter_size * 2 if is_gated_activation(
self.hidden_act) else self.expert_inter_size
self.fc = MOEWeightWrapper(self.hidden_size, fc_out_size,
self.experts_per_node, self.quant_mode,
self.dtype, self.weight_dtype, self.bias,
self.wrapper_tllm_to_externel_key_dict,
self.mapping.moe_tp_size, 0)
self.proj = MOEWeightWrapper(self.expert_inter_size, self.hidden_size,
self.experts_per_node, self.quant_mode,
self.dtype, self.weight_dtype, self.bias,
self.wrapper_tllm_to_externel_key_dict,
self.mapping.moe_tp_size, 1)
def forward(self,
hidden_states,
finished=None,
lora_layer_params=None,
reduce_fusion_params: Optional[AllReduceFusionParams] = None):
moe_router_lora_params = None
if lora_layer_params is not None:
moe_router_lora_params = lora_layer_params.get_runtime_params(
0, "moe_router")
routing_input = cast(hidden_states, trt.float32)
routing = self.router(routing_input, moe_router_lora_params)
output = self.forward_experts(hidden_states, routing, finished,
lora_layer_params)
if self.use_all_reduce:
output = self.forward_allreduce(output, reduce_fusion_params)
return output
def forward_experts(self, hidden_states, routing, finished,
lora_layer_params):
if self.quant_mode.has_fp8_qdq():
assert self.fc.weight.value.dtype == trt.fp8, (
"mlp fc weight dtype should be fp8 in the fp8 quantization mode."
)
assert self.proj.weight.value.dtype == trt.fp8, (
"mlp proj weight dtype should be fp8 in the fp8 quantization mode."
)
hidden_states_quant = hidden_states
if hidden_states_quant.dtype != trt.fp8:
hidden_states_quant = quantize(
hidden_states, self.fc.activation_scaling_factor.value,
'fp8')
dtype_quant = trt.fp8
weight_dtype_quant = trt.fp8
fc1_dequant = self.fc.weights_scaling_factor.value * self.fc.activation_scaling_factor.value
fc2_quant = div(1.0, self.proj.activation_scaling_factor.value)
fc2_dequant = self.proj.weights_scaling_factor.value * self.proj.activation_scaling_factor.value
fc1_act_dequant = self.fc.activation_scaling_factor.value
scale_1 = fc1_dequant
scale_2 = fc2_quant
scale_3 = fc2_dequant
scale_4 = None
scale_5 = fc1_act_dequant
output_dtype_quant = self.dtype
if output_dtype_quant == trt.fp8 and scale_4 is None:
raise RuntimeError(
"Cannot output FP8 value without knowing quantization parameter"
)
else:
hidden_states_quant = hidden_states
dtype_quant = self.dtype
weight_dtype_quant = self.weight_dtype
output_dtype_quant = self.dtype
scale_1 = self.fc.per_channel_scale
scale_2 = self.proj.per_channel_scale
scale_3 = None
scale_4 = None
scale_5 = None
output = _moe_plugin(self.moe_config,
hidden_states_quant,
routing,
expert_weights_1=self.fc.weight.value,
expert_weights_2=self.proj.weight.value,
expert_bias_1=self.fc.bias,
expert_bias_2=self.proj.bias,
expert_scale_1=scale_1,
expert_scale_2=scale_2,
expert_scale_3=scale_3,
expert_scale_4=scale_4,
act_scale=scale_5,
finished=finished,
hidden_size=self.hidden_size,
ffn_hidden_size=self.expert_inter_size,
act_fn=self.hidden_act,
dtype=dtype_quant,
weight_dtype=weight_dtype_quant,
output_dtype=output_dtype_quant,
lora_params=lora_layer_params,
lora_max_low_rank=self.max_low_rank,
quant_mode=self.quant_mode,
tp_size=self.mapping.moe_tp_size,
tp_rank=self.mapping.moe_tp_rank,
ep_size=self.mapping.moe_ep_size,
ep_rank=self.mapping.moe_ep_rank)
return output
def forward_allreduce(
self, output,
reduce_fusion_params: Optional[AllReduceFusionParams]):
if self.tp_size > 1 and self.tp_group is not None:
output = allreduce(output,
self.tp_group,
reduce_fusion_params=reduce_fusion_params)
return output
def load_weights(self, moe: "MixtureOfExperts"):
'''
Load weights from base MOE layer
'''
raise NotImplementedError("Subclass shall override this")
def to(self,
moe_cls: Type["MixtureOfExperts"],
quant_config=None) -> "MixtureOfExperts":
from ..quantization.quantize import quantize
if isinstance(self, moe_cls):
return self
new_moe = moe_cls(**get_init_params(self))
# If config is not None, set quantization from config
if quant_config is not None:
quantize(new_moe, quant_config)
new_moe.load_weights(self)
new_moe.router = self.router
return new_moe
MOE = MixtureOfExperts
class MoeOOTB(MOE):
def init_experts(self):
if self.quant_mode.is_weight_only():
raise ValueError(
f"OOTB MOE does not support weight only quantization now, current quant mode: {self.quant_mode}"
)
ClsMLP = GatedMLP if is_gated_activation(self.hidden_act) else MLP
tp_size = 1
tp_group = None
self.experts = ModuleList([
ClsMLP(self.hidden_size, self.expert_inter_size,
non_gated_version(self.hidden_act), self.bias, self.dtype,
tp_group, tp_size, self.quant_mode)
for _ in range(self.experts_per_node)
])
def moe_to_expert_lora_params(self, lora_layer_params, expert_idx):
def get_params(module):
ranks = lora_layer_params.get_runtime_params(0,
module).lora_ranks[0]
weights_pointers = lora_layer_params.get_runtime_params(
0, module).lora_weights_pointers[0]
return ranks, weights_pointers
if lora_layer_params is None:
return None
fc_lora_ranks, fc_lora_weights_pointers = get_params("moe_h_to_4h")
proj_lora_ranks, proj_lora_weights_pointers = get_params("moe_4h_to_h")
gate_lora_ranks = None
gate_lora_weights_pointers = None
if is_gated_activation(self.hidden_act):
gate_lora_ranks, gate_lora_weights_pointers = get_params("moe_gate")
return LoraParams(
lora_ranks=[{
"mlp_h_to_4h_lora_ranks": fc_lora_ranks,
"mlp_4h_to_h_lora_ranks": proj_lora_ranks,
"mlp_gate_lora_ranks": gate_lora_ranks,
}],
lora_weights_pointers=[{
"mlp_h_to_4h_lora_weights_pointers":
fc_lora_weights_pointers,
"mlp_4h_to_h_lora_weights_pointers":
proj_lora_weights_pointers,
"mlp_gate_lora_weights_pointers":
gate_lora_weights_pointers,
}],
host_context_lengths=lora_layer_params.host_context_lengths,
max_encoder_context_length=lora_layer_params.
max_encoder_context_length,
host_request_types=lora_layer_params.host_request_types,
host_encoder_input_lengths=lora_layer_params.
host_encoder_input_lengths,
weight_index=expert_idx,
)
def forward_experts(self, hidden_states, routing, finished,
lora_layer_params):
# TODO: https://nvbugspro.nvidia.com/bug/4781396 after this nvbug is fixed, we will remove this check.
if lora_layer_params is not None:
for module in ["mlp_h_to_4h", "mlp_4h_to_h", "mlp_gate"]:
if lora_layer_params.get_runtime_params(0, module) is not None:
raise RuntimeError(
f"MoE OOTB does not support {module} LoRA module, please enable MoE plugin"
)
if self.moe_config.normalization_mode == MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE:
topk_values, topk_indices = topk(routing, self.top_k, dim=-1)
topk_values = softmax(topk_values, -1)
else:
router_probs = softmax(routing, -1)
topk_values, topk_indices = topk(router_probs, self.top_k, dim=-1)
hidden_size = shape(hidden_states, -1)
# [B*sq, hidden]
inputs_merged = hidden_states.view(concat([-1, hidden_size]))
flat_topk_indices = topk_indices.view(
concat([-1, shape(topk_indices, -1)]))
flat_topk_values = topk_values.view(concat([-1,
shape(topk_values, -1)]))
# Create output space
zero_buffer = inputs_merged * 0.0
output = zero_buffer
expert_indices_stack = []
indices_stack = []
# When topk indices are equal to expert index, the expert will inference the tokens.
# Bundle all indices and experts index, then do mask once.
for i, expert in enumerate(self.experts):
if self.mapping.has_moe_ep():
index = i + self.experts_per_node * self.mapping.moe_ep_rank
else:
index = i
expert_indices_stack.append(
flat_topk_indices.view(concat([1, shape(flat_topk_indices)])))
indices_stack.append(constant(int32_array(index)))
all_expert_indices = concat(expert_indices_stack, dim=0)
indices = expand(
concat(indices_stack).view(concat([len(self.experts), 1, 1])),
shape(all_expert_indices))
# Create all experts mask
all_expert_mask = all_expert_indices == indices
experts_weights = cast(
sum(flat_topk_values *
cast(all_expert_mask, flat_topk_values.dtype),
dim=-1,
keepdim=True), self.dtype)
all_expert_mask = cast(
sum(cast(all_expert_mask, flat_topk_values.dtype),
dim=-1,
keepdim=True), 'bool')
all_expert_mask = repeat_interleave(all_expert_mask, shape(output, -1),
2)
# split the mask and weights for each expert
experts_mask = split(all_expert_mask, 1, dim=0)
expert_weights = split(experts_weights, 1, dim=0)
for i, expert in enumerate(self.experts):
if self.mapping.has_moe_ep():
index = i + self.experts_per_node * self.mapping.moe_ep_rank
else:
index = i
# get mask token index
non_zero_index = nonzero(experts_mask[i].view(
concat([-1, hidden_size])))
non_zero_index = non_zero_index.transpose(1, 0)
input_for_expert = gather_nd(inputs_merged, non_zero_index, 0)
input_for_expert = input_for_expert.view(concat([-1, hidden_size]),
zero_is_placeholder=False)
# Expert inference
expert_output = expert(
input_for_expert,
lora_layer_params=self.moe_to_expert_lora_params(
lora_layer_params, index))
# scatter expert output to real position
expert_finialized_output = zero_buffer
expert_finialized_output = scatter_nd(
expert_finialized_output, non_zero_index,
expert_output.view([-1])) * expert_weights[i]
output += expert_finialized_output
output = output.view(shape(hidden_states))
return output
def load_weights(self, moe: MOE):
for i, expert in enumerate(self.experts):
is_gated_act = is_gated_activation(self.hidden_act)
# Gated weight pack in expert1 weights
# expert_weights_1
experts_weight_1_raw = moe.fc.weight.raw_value
fc1_weight_scale = None
fc1_activation_scale = None
fc2_weight_scale = None
fc2_activation_scale = None
if self.quant_mode.has_fp8_qdq():
fc1_weight_scale = moe.fc.weights_scaling_factor.raw_value
fc1_activation_scale = moe.fc.activation_scaling_factor.raw_value
fc2_weight_scale = moe.proj.weights_scaling_factor.raw_value
fc2_activation_scale = moe.proj.activation_scaling_factor.raw_value
if self.quant_mode.is_weight_only():
expert.fc.weight.value = experts_weight_1_raw[
i, :, -self.expert_inter_size:]
if is_gated_act:
expert.gate.weight.value = experts_weight_1_raw[
i, :, :self.expert_inter_size]
else:
expert.fc.weight.value = experts_weight_1_raw[
i, -self.expert_inter_size:, :]
if is_gated_act:
expert.gate.weight.value = experts_weight_1_raw[
i, :self.expert_inter_size, :]
if self.quant_mode.has_fp8_qdq():
expert.fc.activation_scaling_factor.value = fc1_activation_scale
expert.fc.weights_scaling_factor.value = fc1_weight_scale[i]
expert.proj.activation_scaling_factor.value = fc2_activation_scale
expert.proj.weights_scaling_factor.value = fc2_weight_scale[i]
if is_gated_act:
expert.gate.activation_scaling_factor.value = fc1_activation_scale
expert.gate.weights_scaling_factor.value = fc1_weight_scale[
i]
# expert_weights_2
experts_weight_2_raw = moe.proj.weight.raw_value
expert.proj.weight.value = experts_weight_2_raw[i, :, :]
has_bias = self.bias
if has_bias:
experts_bias_1_raw = moe.fc.bias.raw_value
expert.fc.bias.value = experts_bias_1_raw[
i, -self.expert_inter_size:]
experts_bias_2_raw = moe.proj.bias.raw_value
expert.proj.bias.value = experts_bias_2_raw[i, :]
if is_gated_act:
expert.gate.bias.value = experts_bias_1_raw[
i, :self.expert_inter_size]