TensorRT-LLMs/cpp/tensorrt_llm/batch_manager/utils/inflightBatchingUtils.h
Robin Kobus 79a94a28f9
refactor: unique_ptr instead of shared_ptr (#4697)
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-05-29 22:49:35 +02:00

127 lines
5.1 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/batch_manager/common.h"
#include "tensorrt_llm/batch_manager/kvCacheManager.h"
#include "tensorrt_llm/batch_manager/peftCacheManager.h"
#include "tensorrt_llm/batch_manager/runtimeBuffers.h"
#include "tensorrt_llm/batch_manager/sequenceSlotManager.h"
#include "tensorrt_llm/common/optionalRef.h"
#include "tensorrt_llm/runtime/iTensor.h"
namespace tensorrt_llm::batch_manager::utils
{
using SizeType32 = runtime::SizeType32;
using TensorPtr = runtime::ITensor::SharedPtr;
template <typename T>
using OptionalRef = common::OptionalRef<T>;
TensorPtr collectRequestIds(RequestVector const& contextRequests, RequestVector const& generationRequests);
//! @brief Sort requests for functional correctness and performance.
//! @details Sort context requests for moveFinishedContextRequestsToGeneration.
//! Sort requests by lora task id for performance.
//! @param contextRequests The context requests.
//! @param generationRequests The generation requests.
//! @param chunksPresent Whether context chunks are present.
void sortRequests(RequestVector& contextRequests, RequestVector& generationRequests, bool chunksPresent);
//! @brief Move finished context requests to generation requests.
//! @details This function assumes that the context requests are sorted so that requests with isLastContextChunk() are
//! at the end of the context requests vector. These requests are moved to the beginning of the generation
//! requests vector. This means that the order of the requests in context+generation requests is not changed.
//! @param scheduledRequests The scheduled context and generation requests.
void moveFinishedContextRequestsToGeneration(ScheduledRequests& scheduledRequests);
//! @param beforeDecoder Whether the function is called before the decoder. If it is true, correct the output offset.
//! @param numDroppedTokens The number of dropped tokens for each beam (e.g. when the requests finished early).
//! Generation logits for dropped tokens are ignored.
void copyGenerationLogits(RuntimeBuffers::GenerationLogitsCache& generationLogitsCache,
runtime::BufferManager const& bufferManager, LlmRequest& llmReq, bool beforeDecoder,
std::vector<SizeType32> const& numDroppedTokens = {});
void copyAdditionalOutputs(std::vector<executor::AdditionalModelOutput> const& additionalModelOutputs,
RequestVector const& contextRequests, RequestVector const& generationRequests,
RuntimeBuffers::TensorMap const& outputMap, runtime::BufferManager const& manager);
void terminateRequest(SequenceSlotManager& seqSlotManager, LlmRequest& llmRequest, SizeType32 maxInputLen,
OptionalRef<kv_cache_manager::BaseKVCacheManager> kvCacheManager = std::nullopt,
OptionalRef<kv_cache_manager::BaseKVCacheManager> crossKvCacheManager = std::nullopt,
OptionalRef<BasePeftCacheManager> peftCacheManager = std::nullopt, bool pause = false);
std::vector<SizeType32> getRequestBeamWidths(
RequestVector const& contextRequests, RequestVector const& generationRequests);
class CudaGraphExecutor
{
public:
CudaGraphExecutor() = default;
~CudaGraphExecutor()
{
try
{
clear();
}
catch (std::exception& e)
{
TLLM_LOG_EXCEPTION(e);
}
}
bool hasInstance() const
{
return mInstance != nullptr;
}
void clear();
void prepareNextGraph(std::unique_ptr<runtime::TllmRuntime>& runtime, SizeType32 nextContextId);
void launch(runtime::CudaStream const& stream);
private:
void create(cudaGraph_t const& graph);
bool update(cudaGraph_t const& graph);
void uploadToStream(runtime::CudaStream const& stream);
cudaGraphExec_t mInstance;
};
class CudaGraphExecutorCache
{
/// @brief LRU cache to store cuda graph instances.
public:
explicit CudaGraphExecutorCache(runtime::SizeType32 capacity)
: mCapacity(capacity)
{
}
std::optional<std::shared_ptr<CudaGraphExecutor>> get(BatchState const& state);
void put(BatchState const& state, std::shared_ptr<CudaGraphExecutor> const& value);
private:
using BatchStateGraphExecutorPair = std::pair<BatchState, std::shared_ptr<CudaGraphExecutor>>;
using GraphExecutorLruCache = std::list<BatchStateGraphExecutorPair>;
SizeType32 mCapacity;
GraphExecutorLruCache mCache;
std::unordered_map<BatchState, GraphExecutorLruCache::iterator, BatchStateHash> mMap;
};
} // namespace tensorrt_llm::batch_manager::utils