TensorRT-LLMs/docker/common/install_tensorrt.sh
Emma Qiao ff32caf4d7
[Infra] - Update dependencies with NGC PyTorch 25.05 and TRT 10.11 (#4885)
Signed-off-by: qqiao <qqiao@nvidia.com>
Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>
Signed-off-by: Emma Qiao <qqiao@nvidia.com>
Co-authored-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>
Co-authored-by: Erin Ho <14718778+hchings@users.noreply.github.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>
2025-06-17 23:48:34 +08:00

159 lines
5.9 KiB
Bash

#!/bin/bash
set -ex
TRT_VER="10.11.0.33"
# Align with the pre-installed cuDNN / cuBLAS / NCCL versions from
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-25-05.html#rel-25-05
CUDA_VER="12.9" # 12.9.0
# Keep the installation for cuDNN if users want to install PyTorch with source codes.
# PyTorch 2.x can compile with cuDNN v9.
CUDNN_VER="9.10.1.4-1"
# NCCL version 2.26.x used in the NGC PyTorch 25.05 image but has a performance regression issue.
# Use NCCL version 2.25.1 instead.
NCCL_VER="2.25.1-1+cuda12.8"
# Use cuBLAS version 12.9.0.13 instead.
CUBLAS_VER="12.9.0.13-1"
# Align with the pre-installed CUDA / NVCC / NVRTC versions from
# https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
NVRTC_VER="12.9.41-1"
CUDA_RUNTIME="12.9.37-1"
CUDA_DRIVER_VERSION="575.51.03-1.el8"
for i in "$@"; do
case $i in
--TRT_VER=?*) TRT_VER="${i#*=}";;
--CUDA_VER=?*) CUDA_VER="${i#*=}";;
--CUDNN_VER=?*) CUDNN_VER="${i#*=}";;
--NCCL_VER=?*) NCCL_VER="${i#*=}";;
--CUBLAS_VER=?*) CUBLAS_VER="${i#*=}";;
*) ;;
esac
shift
done
NVCC_VERSION_OUTPUT=$(nvcc --version)
if [[ $(echo $NVCC_VERSION_OUTPUT | grep -oP "\d+\.\d+" | head -n 1) != ${CUDA_VER} ]]; then
echo "The version of pre-installed CUDA is not equal to ${CUDA_VER}."
fi
install_ubuntu_requirements() {
apt-get update && apt-get install -y --no-install-recommends gnupg2 curl ca-certificates
ARCH=$(uname -m)
if [ "$ARCH" = "amd64" ];then ARCH="x86_64";fi
if [ "$ARCH" = "aarch64" ];then ARCH="sbsa";fi
curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/${ARCH}/cuda-keyring_1.1-1_all.deb
dpkg -i cuda-keyring_1.1-1_all.deb
rm cuda-keyring_1.1-1_all.deb
apt-get update
if [[ $(apt list --installed | grep libcudnn9) ]]; then
apt-get remove --purge -y libcudnn9*
fi
if [[ $(apt list --installed | grep libnccl) ]]; then
apt-get remove --purge -y --allow-change-held-packages libnccl*
fi
if [[ $(apt list --installed | grep libcublas) ]]; then
apt-get remove --purge -y --allow-change-held-packages libcublas*
fi
if [[ $(apt list --installed | grep cuda-nvrtc-dev) ]]; then
apt-get remove --purge -y --allow-change-held-packages cuda-nvrtc-dev*
fi
CUBLAS_CUDA_VERSION=$(echo $CUDA_VER | sed 's/\./-/g')
NVRTC_CUDA_VERSION=$(echo $CUDA_VER | sed 's/\./-/g')
apt-get install -y --no-install-recommends \
libcudnn9-cuda-12=${CUDNN_VER} \
libcudnn9-dev-cuda-12=${CUDNN_VER} \
libcudnn9-headers-cuda-12=${CUDNN_VER} \
libnccl2=${NCCL_VER} \
libnccl-dev=${NCCL_VER} \
libcublas-${CUBLAS_CUDA_VERSION}=${CUBLAS_VER} \
libcublas-dev-${CUBLAS_CUDA_VERSION}=${CUBLAS_VER} \
cuda-nvrtc-dev-${NVRTC_CUDA_VERSION}=${NVRTC_VER}
apt-get clean
rm -rf /var/lib/apt/lists/*
}
install_rockylinux_requirements() {
CUBLAS_CUDA_VERSION=$(echo $CUDA_VER | sed 's/\./-/g')
ARCH=$(uname -m)
if [ "$ARCH" = "x86_64" ];then ARCH1="x86_64" && ARCH2="x64" && ARCH3=$ARCH1;fi
if [ "$ARCH" = "aarch64" ];then ARCH1="aarch64" && ARCH2="aarch64sbsa" && ARCH3="sbsa";fi
# Download and install packages
for pkg in \
"libnccl-${NCCL_VER}.${ARCH1}" \
"libnccl-devel-${NCCL_VER}.${ARCH1}" \
"cuda-compat-${CUBLAS_CUDA_VERSION}-${CUDA_DRIVER_VERSION}.${ARCH1}" \
"cuda-toolkit-${CUBLAS_CUDA_VERSION}-config-common-${CUDA_RUNTIME}.noarch" \
"cuda-toolkit-12-config-common-${CUDA_RUNTIME}.noarch" \
"cuda-toolkit-config-common-${CUDA_RUNTIME}.noarch" \
"libcublas-${CUBLAS_CUDA_VERSION}-${CUBLAS_VER}.${ARCH1}" \
"libcublas-devel-${CUBLAS_CUDA_VERSION}-${CUBLAS_VER}.${ARCH1}"; do
wget -q --timeout=180 --tries=3 "https://developer.download.nvidia.cn/compute/cuda/repos/rhel8/${ARCH3}/${pkg}.rpm"
done
# Remove old packages
dnf remove -y "libnccl*" "cuda-compat*" "cuda-toolkit*" "libcublas*"
# Install new packages
dnf -y install \
libnccl-${NCCL_VER}.${ARCH1}.rpm \
libnccl-devel-${NCCL_VER}.${ARCH1}.rpm \
cuda-compat-${CUBLAS_CUDA_VERSION}-${CUDA_DRIVER_VERSION}.${ARCH1}.rpm \
cuda-toolkit-${CUBLAS_CUDA_VERSION}-config-common-${CUDA_RUNTIME}.noarch.rpm \
cuda-toolkit-12-config-common-${CUDA_RUNTIME}.noarch.rpm \
cuda-toolkit-config-common-${CUDA_RUNTIME}.noarch.rpm \
libcublas-${CUBLAS_CUDA_VERSION}-${CUBLAS_VER}.${ARCH1}.rpm \
libcublas-devel-${CUBLAS_CUDA_VERSION}-${CUBLAS_VER}.${ARCH1}.rpm
# Clean up
rm -f *.rpm
dnf clean all
nvcc --version
}
install_tensorrt() {
PY_VERSION=$(python3 -c 'import sys; print(".".join(map(str, sys.version_info[0:2])))')
PARSED_PY_VERSION=$(echo "${PY_VERSION//./}")
TRT_CUDA_VERSION=${CUDA_VER}
TRT_VER_SHORT=$(echo $TRT_VER | cut -d. -f1-3)
if [ -z "$RELEASE_URL_TRT" ];then
ARCH=${TRT_TARGETARCH}
if [ -z "$ARCH" ];then ARCH=$(uname -m);fi
if [ "$ARCH" = "arm64" ];then ARCH="aarch64";fi
if [ "$ARCH" = "amd64" ];then ARCH="x86_64";fi
RELEASE_URL_TRT="https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/${TRT_VER_SHORT}/tars/TensorRT-${TRT_VER}.Linux.${ARCH}-gnu.cuda-${TRT_CUDA_VERSION}.tar.gz"
fi
wget --no-verbose ${RELEASE_URL_TRT} -O /tmp/TensorRT.tar
tar -xf /tmp/TensorRT.tar -C /usr/local/
mv /usr/local/TensorRT-${TRT_VER} /usr/local/tensorrt
pip3 install --no-cache-dir /usr/local/tensorrt/python/tensorrt-*-cp${PARSED_PY_VERSION}-*.whl
rm -rf /tmp/TensorRT.tar
echo 'export LD_LIBRARY_PATH=/usr/local/tensorrt/lib:$LD_LIBRARY_PATH' >> "${ENV}"
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu_requirements
install_tensorrt
;;
rocky)
install_rockylinux_requirements
install_tensorrt
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac