TensorRT-LLMs/benchmarks/cpp/utils/utils.py
rakib-hasan ff3b741045
feat: adding multimodal (only image for now) support in trtllm-bench (#3490)
* feat: adding multimodal (only image for now) support in trtllm-bench

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* fix: add  in load_dataset() calls to maintain the v2.19.2 behavior

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* re-adding prompt_token_ids and using that for prompt_len

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* updating the datasets version in examples as well

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* api changes are not needed

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* moving datasets requirement and removing a missed api change

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* addressing review comments

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* refactoring the quickstart example

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

---------

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>
2025-04-18 07:06:16 +08:00

154 lines
5.1 KiB
Python

import json
import math
import os
import random
from typing import List, Union
import numpy as np
from pydantic import BaseModel
class TextSample(BaseModel):
input_len: int
input_ids: List[int]
output_len: int
task_id: int
class MultimodalSample(BaseModel):
task_id: int
prompt: str
media_paths: List[str]
output_len: int
class Workload(BaseModel):
metadata: dict
samples: List[Union[TextSample, MultimodalSample]] = []
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self.setup_workload_name()
def setup_workload_name(self):
# Keys to ignore
ignore_keys = ['tokenizer']
# Create a string by concatenating keys and values with "__"
workload_name = '__'.join(f'{key}:{value}'
for key, value in self.metadata.items()
if key not in ignore_keys)
self.metadata.setdefault('workload_name', workload_name)
def text_dataset_dump(input_lens, input_ids, output_lens, task_ids, metadata,
output_file):
samples = []
for i in range(len(input_ids)):
samples.append(
TextSample(input_len=input_lens[i],
input_ids=input_ids[i],
output_len=output_lens[i],
task_id=task_ids[i]))
workload = Workload(metadata=metadata, samples=samples)
os.makedirs(os.path.dirname(output_file), exist_ok=True)
with open(output_file, 'w') as f:
json.dump(workload.model_dump(), f)
def multimodal_dataset_dump(multimodal_texts, multimodal_image_paths,
output_lens, task_ids, metadata, output_file):
samples = []
for i in range(len(multimodal_texts)):
samples.append(
MultimodalSample(task_id=task_ids[i],
prompt=multimodal_texts[i],
media_paths=multimodal_image_paths[i],
output_len=output_lens[i]))
workload = Workload(metadata=metadata, samples=samples)
os.makedirs(os.path.dirname(output_file), exist_ok=True)
with open(output_file, 'w') as f:
json.dump(workload.model_dump(), f)
def print_text_dataset(input_ids, output_lens):
for i, input_tokens in enumerate(input_ids):
d = {
"task_id": i,
"input_ids": input_tokens,
"output_tokens": output_lens[i]
}
print(json.dumps(d, separators=(',', ':'), ensure_ascii=False))
def print_multimodal_dataset(multimodal_texts, multimodal_image_paths,
output_lens):
for i, (text, image_paths) in enumerate(
zip(multimodal_texts, multimodal_image_paths)):
d = {
"task_id": i,
"prompt": text,
"media_paths": image_paths,
"output_tokens": output_lens[i]
}
print(json.dumps(d, separators=(',', ':'), ensure_ascii=False))
def get_list_of_delays(delay_dist, mean_time_bet_reqs, num_reqs, random_seed):
if delay_dist == "constant":
delays = [mean_time_bet_reqs] * num_reqs
elif delay_dist == "exponential_dist":
delays = get_exponential_dist_delays(mean_time_bet_reqs, num_reqs,
random_seed)
return delays
def get_exponential_dist_delays(mean_time_bet_reqs, num_reqs, random_seed):
# set seed for determinism
np.random.seed(random_seed)
return np.random.exponential(mean_time_bet_reqs, num_reqs).tolist()
def get_norm_dist_lengths(mean, stdev, num_reqs, random_seed):
# set seed for determinism
np.random.seed(random_seed)
numbers_list = np.random.normal(loc=mean, scale=stdev,
size=num_reqs).tolist()
return [max(1, math.ceil(x)) for x in numbers_list]
def get_unif_dist_lengths(min_len, max_len, num_reqs, random_seed):
# set seed for determinism
rng = np.random.default_rng(random_seed)
numbers = rng.integers(low=min_len, high=max_len + 1, size=num_reqs)
return numbers.tolist()
def gen_random_tokens(ip_lens, tokenizer, random_seed):
def get_sample_from_population(population_range, sample_size):
# random.sample can not sample a value more than once. hence the check
if sample_size < len(population_range):
sample = random.sample(population_range, sample_size)
else:
sample = random.choices(population_range, k=sample_size)
return sample
input_ids = []
random.seed(random_seed)
for ip_len in ip_lens:
start_ids = get_sample_from_population(range(0, tokenizer.vocab_size),
ip_len)
# Make sure it does not contain EOS token
eos_id = tokenizer.encode(tokenizer.eos_token, add_special_tokens=False)
while set(eos_id).issubset(start_ids):
tmp_id = (eos_id[0] + 1) % tokenizer.vocab_size
start_ids = [
tmp_id if element == eos_id[0] else element
for element in start_ids
]
input_ids.append(start_ids)
return input_ids