TensorRT-LLMs/tensorrt_llm/evaluate/cnn_dailymail.py
rakib-hasan ff3b741045
feat: adding multimodal (only image for now) support in trtllm-bench (#3490)
* feat: adding multimodal (only image for now) support in trtllm-bench

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* fix: add  in load_dataset() calls to maintain the v2.19.2 behavior

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* re-adding prompt_token_ids and using that for prompt_len

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* updating the datasets version in examples as well

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* api changes are not needed

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* moving datasets requirement and removing a missed api change

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* addressing review comments

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

* refactoring the quickstart example

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>

---------

Signed-off-by: Rakib Hasan <rhasan@nvidia.com>
2025-04-18 07:06:16 +08:00

98 lines
4.2 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Iterable, List, Optional, Union
import click
import datasets
import evaluate
from .._torch import LLM as PyTorchLLM
from ..llmapi import LLM, RequestOutput
from ..logger import logger
from ..sampling_params import SamplingParams
from .interface import Evaluator
class CnnDailymail(Evaluator):
def __init__(self,
dataset_path: str = "ccdv/cnn_dailymail",
num_samples: int = None,
random_seed: int = 0,
rouge_path: str = "rouge",
apply_chat_template: bool = False,
system_prompt: Optional[str] = None):
super().__init__(apply_chat_template=apply_chat_template,
system_prompt=system_prompt)
self.data = datasets.load_dataset(dataset_path,
"3.0.0",
split="test",
trust_remote_code=True)
self.data = self.data.shuffle(random_seed)
if num_samples is None:
self.num_samples = self.data.num_rows
else:
self.num_samples = min(num_samples, self.data.num_rows)
self.rouge = evaluate.load(rouge_path)
def generate_samples(self) -> Iterable[tuple]:
for i, sample in enumerate(self.data):
if i >= self.num_samples:
break
prompt = sample["article"] + " TL;DR:"
prompt = prompt.strip().replace(" n't", "n't")
yield prompt, sample["highlights"]
def compute_score(self, outputs: List[RequestOutput],
references: List[str]) -> float:
for beam_idx in range(len(outputs[0].outputs)):
metrics = self.rouge.compute(
predictions=[output.outputs[0].text for output in outputs],
references=references)
logger.info(f"Beam {beam_idx} rouge scores:")
for key in metrics.keys():
logger.info(f"\t{key}: {metrics[key]*100:.3f}")
if beam_idx == 0:
rouge1 = metrics["rouge1"] * 100
return rouge1
@click.command("cnn_dailymail")
@click.option("--dataset_path", type=str, default="ccdv/cnn_dailymail")
@click.option("--num_samples", type=int, default=None)
@click.option("--random_seed", type=int, default=0)
@click.option("--rouge_path", type=str, default="rouge")
@click.option("--max_input_length", type=int, default=924)
@click.option("--max_output_length", type=int, default=100)
@click.option("--check_accuracy", is_flag=True, default=False)
@click.option("--accuracy_threshold", type=float, default=15)
@click.pass_context
@staticmethod
def command(ctx, dataset_path: str, num_samples: int, random_seed: int,
rouge_path: str, max_input_length: int, max_output_length: int,
check_accuracy: bool, accuracy_threshold: float) -> None:
llm: Union[LLM, PyTorchLLM] = ctx.obj
sampling_params = SamplingParams(
max_tokens=max_output_length,
truncate_prompt_tokens=max_input_length)
evaluator = CnnDailymail(dataset_path,
num_samples=num_samples,
random_seed=random_seed,
rouge_path=rouge_path)
accuracy = evaluator.evaluate(llm, sampling_params)
llm.shutdown()
if check_accuracy:
assert accuracy >= accuracy_threshold, f"Expected accuracy >= {accuracy_threshold}, but got {accuracy}"