mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
* feat: adding multimodal (only image for now) support in trtllm-bench Signed-off-by: Rakib Hasan <rhasan@nvidia.com> * fix: add in load_dataset() calls to maintain the v2.19.2 behavior Signed-off-by: Rakib Hasan <rhasan@nvidia.com> * re-adding prompt_token_ids and using that for prompt_len Signed-off-by: Rakib Hasan <rhasan@nvidia.com> * updating the datasets version in examples as well Signed-off-by: Rakib Hasan <rhasan@nvidia.com> * api changes are not needed Signed-off-by: Rakib Hasan <rhasan@nvidia.com> * moving datasets requirement and removing a missed api change Signed-off-by: Rakib Hasan <rhasan@nvidia.com> * addressing review comments Signed-off-by: Rakib Hasan <rhasan@nvidia.com> * refactoring the quickstart example Signed-off-by: Rakib Hasan <rhasan@nvidia.com> --------- Signed-off-by: Rakib Hasan <rhasan@nvidia.com>
1275 lines
49 KiB
Python
Executable File
1275 lines
49 KiB
Python
Executable File
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Adapted from examples/quantization/hf_ptq.py
|
|
"""
|
|
|
|
import copy
|
|
import json
|
|
import os
|
|
import random
|
|
import sys
|
|
import time
|
|
from importlib.metadata import version
|
|
|
|
import numpy as np
|
|
import torch
|
|
from accelerate.hooks import remove_hook_from_module
|
|
from datasets import load_dataset
|
|
from modelopt.torch.utils import print_rank_0
|
|
from safetensors.torch import load_file, save_file
|
|
from torch.utils.data import DataLoader
|
|
from transformers import (AutoConfig, AutoModelForCausalLM, AutoProcessor,
|
|
AutoTokenizer)
|
|
|
|
from .._utils import release_gc, str_dtype_to_torch
|
|
from ..logger import logger
|
|
from ..mapping import Mapping
|
|
from .image_processing import MllamaImageProcessor
|
|
from .mode import QuantAlgo
|
|
|
|
EMPTY_CFG = {
|
|
"quant_cfg": {
|
|
"*weight_quantizer": {
|
|
"enable": False,
|
|
},
|
|
"*input_quantizer": {
|
|
"enable": False
|
|
},
|
|
"*lm_head*": {
|
|
"enable": False
|
|
},
|
|
"*output_layer*": {
|
|
"enable": False
|
|
},
|
|
"default": {
|
|
"enable": False
|
|
},
|
|
},
|
|
"algorithm": "max",
|
|
}
|
|
|
|
KV_CACHE_CFG = {
|
|
"*.query_key_value.output_quantizer": {
|
|
"num_bits": 8,
|
|
"axis": None,
|
|
"enable": True
|
|
},
|
|
"*.Wqkv.output_quantizer": {
|
|
"num_bits": 8,
|
|
"axis": None,
|
|
"enable": True
|
|
},
|
|
"*.W_pack.output_quantizer": {
|
|
"num_bits": 8,
|
|
"axis": None,
|
|
"enable": True
|
|
},
|
|
"*.c_attn.output_quantizer": {
|
|
"num_bits": 8,
|
|
"axis": None,
|
|
"enable": True
|
|
},
|
|
"*.k_proj.output_quantizer": {
|
|
"num_bits": 8,
|
|
"axis": None,
|
|
"enable": True
|
|
},
|
|
"*.v_proj.output_quantizer": {
|
|
"num_bits": 8,
|
|
"axis": None,
|
|
"enable": True
|
|
},
|
|
"*.k.output_quantizer": {
|
|
"num_bits": 8,
|
|
"axis": None,
|
|
"enable": True
|
|
},
|
|
"*.v.output_quantizer": {
|
|
"num_bits": 8,
|
|
"axis": None,
|
|
"enable": True
|
|
},
|
|
}
|
|
|
|
KV_QUANT_CFG_CHOICES = {
|
|
"fp8": "FP8_KV_CFG",
|
|
"nvfp4": "NVFP4_KV_CFG",
|
|
}
|
|
|
|
|
|
def quant_cfg_choices():
|
|
import modelopt.torch.quantization as mtq
|
|
QUANT_CFG_CHOICES = {
|
|
"int8_sq": mtq.INT8_SMOOTHQUANT_CFG,
|
|
"fp8": mtq.FP8_DEFAULT_CFG,
|
|
"int4_awq": mtq.INT4_AWQ_CFG,
|
|
"w4a8_awq": mtq.W4A8_AWQ_BETA_CFG,
|
|
"int8_wo": EMPTY_CFG,
|
|
"int4_wo": EMPTY_CFG,
|
|
"full_prec": EMPTY_CFG,
|
|
}
|
|
if hasattr(mtq, "NVFP4_DEFAULT_CFG"):
|
|
QUANT_CFG_CHOICES["nvfp4"] = mtq.NVFP4_DEFAULT_CFG
|
|
return QUANT_CFG_CHOICES
|
|
|
|
|
|
def model_type_is_enc_dec(model_type):
|
|
return model_type in ["t5", "bart"]
|
|
|
|
|
|
MODEL_NAME_PATTERN_MAP = {
|
|
"GPT2": "gpt2",
|
|
"Xverse": "llama",
|
|
"MllamaForConditionalGeneration": "mllama",
|
|
"Llama": "llama",
|
|
"MllamaForCausalLM": "mllama",
|
|
"Mistral": "llama",
|
|
"GPTJ": "gptj",
|
|
"FalconForCausalLM": "falcon",
|
|
"RWForCausalLM": "falcon",
|
|
"baichuan": "baichuan",
|
|
"MPT": "mpt",
|
|
"Bloom": "bloom",
|
|
"ChatGLM": "chatglm",
|
|
"QWen": "qwen",
|
|
"Qwen2VLForConditionalGeneration": "qwen2_vl",
|
|
"RecurrentGemma": "recurrentgemma",
|
|
"Gemma3": "gemma3",
|
|
"Gemma2": "gemma2",
|
|
"Gemma": "gemma",
|
|
"MixtralForCausalLM": "llama",
|
|
"NemotronForCausalLM": "nemotron",
|
|
"GPTBigCodeForCausalLM": "gpt_bigcode",
|
|
"ArcticForCausalLM": "llama",
|
|
"PhiMoEForCausalLM": "phi3",
|
|
"Phi3SmallForCausalLM": "phi3small",
|
|
"Phi3ForCausalLM": "phi3",
|
|
"Phi3VForCausalLM": "phi3",
|
|
"Starcoder2ForCausalLM": "gptnext",
|
|
"GPTBigCodeForCausalLM": "gptnext",
|
|
"GLM": "glm",
|
|
"Exaone": "exaone",
|
|
"DeciLMForCausalLM": "deci",
|
|
"DeepseekForCausalLM": "deepseek",
|
|
"GraniteForCausalLM": "granite",
|
|
"GraniteMoeForCausalLM": "granitemoe",
|
|
"T5": "t5",
|
|
"Bart": "bart"
|
|
}
|
|
|
|
MULTIMODAL_DATASETS = ['scienceqa', 'science_qa']
|
|
|
|
|
|
class _CustomDataset(torch.utils.data.Dataset):
|
|
|
|
def __init__(self, encodings):
|
|
self.encodings = encodings
|
|
|
|
def __getitem__(self, idx):
|
|
item = {
|
|
key: val[idx].clone().detach().requires_grad_(False)
|
|
for key, val in self.encodings.items()
|
|
}
|
|
return item
|
|
|
|
def __len__(self):
|
|
return len(self.encodings["input_ids"])
|
|
|
|
|
|
class EncDecModelWrapper(torch.nn.Module):
|
|
|
|
def __init__(self, hf_model=None):
|
|
super().__init__()
|
|
self.hf_model = hf_model
|
|
self.model_type = get_model_type(hf_model)
|
|
|
|
def forward(self, **kwargs):
|
|
self.hf_model.generate(**kwargs)
|
|
|
|
def __getattr__(self, name):
|
|
try:
|
|
return super().__getattr__(name)
|
|
except AttributeError:
|
|
return getattr(self.hf_model, name)
|
|
|
|
|
|
def get_tokenizer(ckpt_path, max_seq_length=2048, model_type=None):
|
|
logger.info(f"Initializing tokenizer from {ckpt_path}")
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
ckpt_path,
|
|
model_max_length=max_seq_length,
|
|
padding_side="left",
|
|
trust_remote_code=True,
|
|
)
|
|
|
|
if tokenizer.pad_token is None:
|
|
if model_type and model_type == "qwen":
|
|
# qwen use token id 151643 as pad and eos tokens
|
|
tokenizer.eos_token = tokenizer.convert_ids_to_tokens(151643)
|
|
tokenizer.pad_token = tokenizer.convert_ids_to_tokens(151643)
|
|
elif model_type and model_type == "qwen2_vl":
|
|
# qwen use token id 151643 as pad and 151643 and 151645 as eos tokens
|
|
tokenizer.eos_token = [
|
|
tokenizer.convert_ids_to_tokens(151643),
|
|
tokenizer.convert_ids_to_tokens(151645)
|
|
]
|
|
tokenizer.pad_token = tokenizer.convert_ids_to_tokens(151643)
|
|
else:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
assert tokenizer.pad_token is not None, f"Pad token for {model_type} cannot be set!"
|
|
|
|
return tokenizer
|
|
|
|
|
|
def get_processor(ckpt_path, max_seq_length=2048, model_type=None, device=None):
|
|
logger.info(f"Initializing tokenizer from {ckpt_path}")
|
|
processor = AutoProcessor.from_pretrained(
|
|
ckpt_path,
|
|
model_max_length=max_seq_length,
|
|
padding_side="left",
|
|
trust_remote_code=True,
|
|
)
|
|
|
|
if processor.tokenizer.pad_token is None:
|
|
if model_type and model_type == "qwen":
|
|
# qwen use token id 151643 as pad and eos tokens
|
|
processor.tokenizer.eos_token = processor.tokenizer.convert_ids_to_tokens(
|
|
151643)
|
|
processor.tokenizer.pad_token = processor.tokenizer.convert_ids_to_tokens(
|
|
151643)
|
|
else:
|
|
processor.tokenizer.pad_token = processor.tokenizer.eos_token
|
|
assert processor.tokenizer.pad_token is not None, f"Pad token for {model_type} cannot be set!"
|
|
|
|
if model_type == 'mllama':
|
|
processor = MllamaImageProcessor(processor, device)
|
|
return processor
|
|
|
|
|
|
def _get_vila_model(model_dir):
|
|
sys.path.append(model_dir + "/../VILA")
|
|
from llava.model import LlavaLlamaConfig, LlavaLlamaModel # noqa
|
|
from transformers import AutoModel
|
|
model = AutoModel.from_pretrained(
|
|
model_dir,
|
|
device_map='auto',
|
|
trust_remote_code=True,
|
|
)
|
|
return model.llm
|
|
|
|
|
|
def get_hf_config(ckpt_path):
|
|
if "mpt" in ckpt_path:
|
|
# MPT-7B cannot get initialized from AutoConfig
|
|
from transformers import MptConfig
|
|
return MptConfig.from_pretrained(ckpt_path)
|
|
else:
|
|
return AutoConfig.from_pretrained(ckpt_path, trust_remote_code=True)
|
|
|
|
|
|
def _get_llava_qwen_model(model_dir, dtype, device):
|
|
if "hf" in model_dir:
|
|
from transformers import LlavaOnevisionForConditionalGeneration
|
|
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
|
model_dir, torch_dtype=dtype, device_map=device)
|
|
model = model.language_model
|
|
else:
|
|
from llava.model.builder import load_pretrained_model
|
|
_, model, _, _ = load_pretrained_model(model_dir,
|
|
None,
|
|
'llava_qwen',
|
|
torch_dtype=dtype,
|
|
device_map=device)
|
|
return model
|
|
|
|
|
|
def get_model(ckpt_path: str,
|
|
dtype: str = 'bfloat16',
|
|
device: str = 'cuda',
|
|
device_map: str = "auto"):
|
|
logger.info(f"Initializing model from {ckpt_path}")
|
|
# Note: VILA model is not in public HF model zoo yet. We need to explicitly import from the git repo
|
|
hf_config = get_hf_config(ckpt_path)
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
|
|
model_cls = AutoModelForCausalLM
|
|
if hf_config.model_type == "llava":
|
|
from transformers import LlavaForConditionalGeneration
|
|
model_cls = LlavaForConditionalGeneration
|
|
elif hf_config.model_type == "mpt":
|
|
from transformers import MptForCausalLM
|
|
model_cls = MptForCausalLM
|
|
elif hf_config.model_type == 'mllama':
|
|
from transformers import MllamaForConditionalGeneration
|
|
model_cls = MllamaForConditionalGeneration
|
|
elif hf_config.model_type == 'qwen2_vl':
|
|
from transformers import Qwen2VLForConditionalGeneration
|
|
model_cls = Qwen2VLForConditionalGeneration
|
|
|
|
if "vila" in ckpt_path:
|
|
model = _get_vila_model(ckpt_path)
|
|
elif "llava-onevision-qwen2" in ckpt_path:
|
|
model = _get_llava_qwen_model(ckpt_path, dtype, device)
|
|
elif hf_config.model_type == "glm":
|
|
from transformers import AutoModelForSeq2SeqLM
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(ckpt_path,
|
|
device_map="cuda",
|
|
torch_dtype=torch_dtype,
|
|
trust_remote_code=True)
|
|
elif model_type_is_enc_dec(hf_config.model_type):
|
|
from transformers import AutoModelForSeq2SeqLM
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(ckpt_path,
|
|
device_map=device,
|
|
torch_dtype=torch_dtype,
|
|
trust_remote_code=True)
|
|
model = EncDecModelWrapper(hf_model=model)
|
|
else:
|
|
model = model_cls.from_pretrained(
|
|
ckpt_path,
|
|
device_map=device_map if device != "cpu" else "cpu",
|
|
torch_dtype="auto",
|
|
trust_remote_code=True)
|
|
if hf_config.model_type in ["llava", "internvl_chat"]:
|
|
model = model.language_model
|
|
elif hf_config.model_type == "qwen2_vl":
|
|
#WAR for Qwen2-VL because its lm_head is outside of LLM
|
|
lm_head = model.lm_head
|
|
model = model.model
|
|
model.lm_head = lm_head
|
|
|
|
model.eval()
|
|
|
|
model_dtype = next(model.parameters()).dtype
|
|
if torch_dtype != model_dtype:
|
|
logger.info(
|
|
f"[TensorRT-LLM][WARNING] The manually set model data type is {dtype}, "
|
|
f"but the data type of the HuggingFace model is {model_dtype}.")
|
|
|
|
return model
|
|
|
|
|
|
def get_model_type(model):
|
|
if type(model).__name__ == "EncDecModelWrapper":
|
|
return model.model_type
|
|
if type(model).__name__ in MODEL_NAME_PATTERN_MAP:
|
|
return MODEL_NAME_PATTERN_MAP[type(model).__name__]
|
|
for k, v in MODEL_NAME_PATTERN_MAP.items():
|
|
if k.lower() in type(model).__name__.lower():
|
|
return v
|
|
return None
|
|
|
|
|
|
def get_calib_dataloader(dataset_name_or_dir="cnn_dailymail",
|
|
tokenizer=None,
|
|
batch_size=1,
|
|
calib_size=512,
|
|
block_size=512,
|
|
device=None,
|
|
include_labels=False):
|
|
logger.info("Loading calibration dataset")
|
|
if dataset_name_or_dir == "pileval":
|
|
dataset = load_dataset(
|
|
"json",
|
|
data_files="https://the-eye.eu/public/AI/pile/val.jsonl.zst",
|
|
split="train",
|
|
trust_remote_code=True)
|
|
dataset = dataset["text"][:calib_size]
|
|
elif "scienceqa" in dataset_name_or_dir.lower(
|
|
) or "science_qa" in dataset_name_or_dir.lower():
|
|
if os.path.isdir(dataset_name_or_dir):
|
|
dataset = load_dataset(dataset_name_or_dir,
|
|
split="train",
|
|
trust_remote_code=True)
|
|
else:
|
|
dataset = load_dataset("derek-thomas/ScienceQA",
|
|
split="train",
|
|
trust_remote_code=True)
|
|
dataset = dataset.select(range(calib_size))
|
|
elif "cnn_dailymail" in dataset_name_or_dir:
|
|
dataset = load_dataset(
|
|
dataset_name_or_dir,
|
|
name="3.0.0",
|
|
split="train",
|
|
trust_remote_code=True,
|
|
)
|
|
dataset = dataset["article"][:calib_size]
|
|
elif os.path.isdir(dataset_name_or_dir):
|
|
logger.info(
|
|
f"Recognized local dataset repo {dataset_name_or_dir} for calibration; "
|
|
"assuming the calibration data are in the train split and text column."
|
|
)
|
|
dataset = load_dataset(dataset_name_or_dir,
|
|
split="train",
|
|
trust_remote_code=True)
|
|
dataset = dataset["text"][:calib_size]
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Unsupported dataset name or local repo directory: {dataset_name_or_dir}."
|
|
)
|
|
|
|
is_multimodal = False
|
|
for dataset_name in MULTIMODAL_DATASETS:
|
|
if dataset_name in dataset_name_or_dir:
|
|
is_multimodal = True
|
|
if is_multimodal:
|
|
# Apply the preprocessing function to the dataset
|
|
processed_dataset = dataset.map(tokenizer.preprocess_function,
|
|
batched=False,
|
|
remove_columns=dataset.column_names)
|
|
|
|
# Create DataLoader with the custom collate function
|
|
calib_dataloader = DataLoader(processed_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=False,
|
|
collate_fn=tokenizer.collate_function)
|
|
else:
|
|
batch_encoded = tokenizer.batch_encode_plus(dataset,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
truncation=True,
|
|
max_length=block_size)
|
|
if device:
|
|
batch_encoded = batch_encoded.to(device)
|
|
|
|
if include_labels:
|
|
# Labels are needed when backward is called in the model.
|
|
# The labels should be a shifted version of the input_ids.
|
|
# However, we should not shift the input_ids here since the labels are shifted by
|
|
# Huggingface models during loss calculation as shown here -
|
|
# https://github.com/huggingface/transformers/blob/7f79a97399bb52aad8460e1da2f36577d5dccfed/src/transformers/models/llama/modeling_llama.py#L1093-L1095
|
|
batch_encoded["labels"] = torch.where(
|
|
batch_encoded["attention_mask"] > 0.5,
|
|
batch_encoded["input_ids"], -100)
|
|
batch_encoded = _CustomDataset(batch_encoded)
|
|
else:
|
|
# For backward compatibility, if labels are not needed, we only return input_ids.
|
|
batch_encoded = _CustomDataset(
|
|
{"input_ids": batch_encoded["input_ids"]})
|
|
|
|
calib_dataloader = DataLoader(batch_encoded,
|
|
batch_size=batch_size,
|
|
shuffle=False)
|
|
|
|
return calib_dataloader
|
|
|
|
|
|
def quantize_model(model, quant_cfg, calib_dataloader, batch_size, qformat,
|
|
auto_quantize_bits):
|
|
import modelopt.torch.quantization as mtq
|
|
|
|
# NOTE: for ModelOpt v0.19 release
|
|
# calibrate_loop = dataset_utils.create_forward_loop(
|
|
# calib_dataloader, dataloader=calib_dataloader)
|
|
|
|
def calibrate_loop():
|
|
if calib_dataloader is None:
|
|
return
|
|
with torch.no_grad():
|
|
low_mem_mode = False
|
|
for idx, data in enumerate(calib_dataloader):
|
|
logger.debug(f"Calibrating batch {idx}")
|
|
batch_size = data[list(data.keys())[0]].shape[0]
|
|
if batch_size == 1:
|
|
model(**data)
|
|
elif not low_mem_mode:
|
|
# Try running the forward once.
|
|
# If output memory, we try running inference with split input tensors
|
|
try:
|
|
model(**data)
|
|
except torch.OutOfMemoryError:
|
|
print(
|
|
"Warning: torch.OutOfMemoryError detected, try reducing the batch size..."
|
|
)
|
|
low_mem_mode = True
|
|
|
|
if low_mem_mode:
|
|
split_data_1 = {
|
|
key: data[key][:batch_size // 2, ...]
|
|
for key in data
|
|
}
|
|
model(**split_data_1)
|
|
|
|
split_data_2 = {
|
|
key: data[key][batch_size // 2:, ...]
|
|
for key in data
|
|
}
|
|
model(**split_data_2)
|
|
|
|
QUANT_CFG_CHOICES = {
|
|
"int8": "INT8_DEFAULT_CFG",
|
|
"int8_sq": "INT8_SMOOTHQUANT_CFG",
|
|
"fp8": "FP8_DEFAULT_CFG",
|
|
"int4_awq": "INT4_AWQ_CFG",
|
|
"w4a8_awq": "W4A8_AWQ_BETA_CFG",
|
|
}
|
|
|
|
logger.info("Starting quantization...")
|
|
start_time = time.time()
|
|
if auto_quantize_bits:
|
|
logger.info("Starting mixed precision quantization...")
|
|
|
|
from packaging import version as v
|
|
opt_kwargs = {}
|
|
modelopt_version = version('nvidia-modelopt')
|
|
if v.parse(modelopt_version) > v.parse("0.21"):
|
|
opt_kwargs['disabled_layers'] = ["*lm_head*"]
|
|
|
|
model, search_history = mtq.auto_quantize(
|
|
model,
|
|
data_loader=calib_dataloader,
|
|
loss_func=lambda output, batch: output.loss,
|
|
constraints={"effective_bits": auto_quantize_bits},
|
|
forward_step=lambda model, batch: model(**batch),
|
|
quantization_formats=[
|
|
QUANT_CFG_CHOICES[item] for item in qformat.split(",")
|
|
] + [None],
|
|
num_calib_steps=len(calib_dataloader),
|
|
num_score_steps=min(
|
|
len(calib_dataloader), 128 // batch_size
|
|
), # Limit the number of score steps to avoid long calibration time
|
|
verbose=True,
|
|
**opt_kwargs)
|
|
mtq.print_quant_summary(model)
|
|
|
|
# We need to explicitly calibrate for kv cache quantization
|
|
enable_kv_cache_quantization = "int8" not in qformat
|
|
if enable_kv_cache_quantization:
|
|
mtq.set_quantizer_by_cfg(
|
|
model,
|
|
quant_cfg={
|
|
"*output_quantizer": {
|
|
"num_bits": (4, 3),
|
|
"axis": None,
|
|
"enable": True
|
|
}
|
|
},
|
|
)
|
|
# Lets calibrate only the output quantizer this time. Let's disable all other quantizers.
|
|
with mtq.set_quantizer_by_cfg_context(model, {
|
|
"*": {
|
|
"enable": False
|
|
},
|
|
"*output_quantizer": {
|
|
"enable": True
|
|
}
|
|
}):
|
|
mtq.calibrate(model,
|
|
algorithm="max",
|
|
forward_loop=calibrate_loop)
|
|
else:
|
|
mtq.quantize(model, quant_cfg, forward_loop=calibrate_loop)
|
|
end_time = time.time()
|
|
logger.info(
|
|
"Quantization done. Total time used: {:.2f} s.".format(end_time -
|
|
start_time))
|
|
return model
|
|
|
|
|
|
def combine_medusa_weight(tp_size, pp_size, base_model_output_dir,
|
|
num_medusa_heads, num_medusa_layers, max_draft_len,
|
|
medusa_hidden_act, medusa_model_dir,
|
|
quant_medusa_head):
|
|
|
|
with open(f"{medusa_model_dir}/config.json", "r") as fp:
|
|
medusa_config = json.load(fp)
|
|
|
|
num_medusa_heads_from_config = medusa_config.get('medusa_num_heads',
|
|
num_medusa_heads)
|
|
num_medusa_layers = medusa_config.get('medusa_num_layers',
|
|
num_medusa_layers)
|
|
if num_medusa_heads is None:
|
|
num_medusa_heads = num_medusa_heads_from_config
|
|
|
|
assert max_draft_len > 0, "should have max_draft_len > 0"
|
|
|
|
world_size = tp_size * pp_size
|
|
# Process for each rank
|
|
for rank in range(world_size):
|
|
mapping = Mapping(world_size=world_size,
|
|
rank=rank,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size)
|
|
# 1. Load medusa weight for each rank
|
|
from tensorrt_llm.models.medusa.weight import load_medusa_hf
|
|
medusa_weights = load_medusa_hf(medusa_path=medusa_model_dir,
|
|
num_medusa_heads=num_medusa_heads,
|
|
num_medusa_layers=num_medusa_layers,
|
|
mapping=mapping,
|
|
dtype="float16")
|
|
# 2. Load base model safetensors (after quant)
|
|
base_model_weights = load_file(
|
|
f"{base_model_output_dir}/rank{rank}.safetensors")
|
|
|
|
# 3. Combine and save weight
|
|
base_model_weights.update(medusa_weights)
|
|
save_file(base_model_weights,
|
|
f"{base_model_output_dir}/rank{rank}.safetensors")
|
|
|
|
# 4. Add medusa config into config.json
|
|
with open(f"{base_model_output_dir}/config.json", 'r') as f:
|
|
base_model_config = json.load(f)
|
|
f.close()
|
|
|
|
with open(f"{base_model_output_dir}/config.json", 'w') as f:
|
|
base_model_config['architecture'] = "MedusaForCausalLM"
|
|
base_model_config['quantization']['exclude_modules'] = [
|
|
'lm_head',
|
|
'*router',
|
|
'*vocab_embedding',
|
|
'*position_embedding',
|
|
'*block_embedding',
|
|
]
|
|
if not quant_medusa_head:
|
|
base_model_config['quantization']['exclude_modules'].append(
|
|
'*medusa_heads*')
|
|
|
|
base_model_config['max_draft_len'] = max_draft_len
|
|
base_model_config['num_medusa_heads'] = num_medusa_heads
|
|
base_model_config['num_medusa_layers'] = num_medusa_layers
|
|
json.dump(base_model_config, f, indent=4)
|
|
|
|
torch.cuda.empty_cache()
|
|
logger.info("Combine medusa heads' weight, done.")
|
|
|
|
|
|
def quantize_and_export(*,
|
|
model_dir,
|
|
device,
|
|
calib_dataset,
|
|
dtype,
|
|
qformat,
|
|
kv_cache_dtype,
|
|
calib_size,
|
|
batch_size,
|
|
calib_max_seq_length,
|
|
awq_block_size,
|
|
output_dir,
|
|
tp_size,
|
|
pp_size,
|
|
cp_size,
|
|
seed,
|
|
tokenizer_max_seq_length,
|
|
num_medusa_heads=None,
|
|
num_medusa_layers=None,
|
|
max_draft_len=None,
|
|
medusa_hidden_act=None,
|
|
medusa_model_dir=None,
|
|
quant_medusa_head=None,
|
|
auto_quantize_bits=None,
|
|
device_map="auto",
|
|
quantize_lm_head=False):
|
|
'''
|
|
Load model from the model_dir, call Modelopt to quantize the model, and then export
|
|
the quantized model as TRT-LLM checkpoint
|
|
'''
|
|
try:
|
|
import modelopt # noqa
|
|
except ImportError as e:
|
|
logger.error(
|
|
"Failed to import modelopt, pls check the Modelopt installation. Currently it is known to be unsupported on Windows OS"
|
|
)
|
|
raise e
|
|
|
|
import modelopt.torch.quantization as mtq
|
|
from modelopt.torch.export import export_tensorrt_llm_checkpoint
|
|
|
|
from tensorrt_llm.models.convert_utils import infer_dtype
|
|
|
|
if not torch.cuda.is_available():
|
|
raise EnvironmentError("GPU is required for inference.")
|
|
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
|
|
# Check that only one quantization format is provided for non auto_quant case
|
|
if not auto_quantize_bits:
|
|
assert (len(qformat.split(",")) == 1
|
|
), "Quantization supports only one quantization format."
|
|
|
|
hf_config = get_hf_config(model_dir)
|
|
dtype = infer_dtype(dtype, getattr(hf_config, 'torch_dtype', None))
|
|
|
|
model = get_model(model_dir, dtype, device=device, device_map=device_map)
|
|
model_type = get_model_type(model)
|
|
is_enc_dec = model_type_is_enc_dec(model_type)
|
|
if "vila" in model_dir:
|
|
tokenizer = get_tokenizer(model_dir + "/llm",
|
|
max_seq_length=tokenizer_max_seq_length,
|
|
model_type=model_type)
|
|
elif model_type == "mllama":
|
|
tokenizer = get_processor(model_dir,
|
|
max_seq_length=tokenizer_max_seq_length,
|
|
model_type=model_type,
|
|
device=device)
|
|
else:
|
|
tokenizer = get_tokenizer(model_dir,
|
|
max_seq_length=tokenizer_max_seq_length,
|
|
model_type=model_type)
|
|
|
|
if qformat in ["full_prec", "int8_wo", "int4_wo"
|
|
] and kv_cache_dtype is None:
|
|
logger.info(f"No quantization applied, export {dtype} model")
|
|
else:
|
|
if "awq" in qformat:
|
|
if calib_size > 32:
|
|
logger.info(
|
|
f"AWQ calibration could take longer with calib_size = {calib_size}, Using"
|
|
" calib_size=32 instead")
|
|
calib_size = 32
|
|
logger.info(
|
|
"\nAWQ calibration could take longer than other calibration methods. Please"
|
|
" increase the batch size to speed up the calibration process. Batch size can be"
|
|
" set by adding the argument --batch_size <batch_size> to the command line.\n"
|
|
)
|
|
|
|
quant_cfg = None
|
|
if not auto_quantize_bits:
|
|
if qformat in quant_cfg_choices():
|
|
quant_cfg = quant_cfg_choices()[qformat]
|
|
else:
|
|
raise ValueError(f"Unsupported quantization format: {qformat}")
|
|
|
|
if "awq" in qformat:
|
|
quant_cfg = copy.deepcopy(quant_cfg_choices()[qformat])
|
|
weight_quantizer = quant_cfg["quant_cfg"]["*weight_quantizer"]
|
|
if isinstance(weight_quantizer, list):
|
|
weight_quantizer = weight_quantizer[0]
|
|
if awq_block_size:
|
|
weight_quantizer["block_sizes"][-1] = awq_block_size
|
|
|
|
# Coarser optimal scale search seems to resolve the overflow in TRT-LLM for some models
|
|
if "w4a8_awq" == qformat and model_type in ["gemma", "mpt"]:
|
|
quant_cfg["algorithm"] = {
|
|
"method": "awq_lite",
|
|
"alpha_step": 1
|
|
}
|
|
|
|
if kv_cache_dtype is not None:
|
|
if kv_cache_dtype == "fp8":
|
|
kv_cache_quant_cfg = getattr(
|
|
mtq, KV_QUANT_CFG_CHOICES[kv_cache_dtype])["quant_cfg"]
|
|
quant_cfg["quant_cfg"].update(kv_cache_quant_cfg)
|
|
else:
|
|
quant_cfg["quant_cfg"].update(KV_CACHE_CFG) # type: ignore
|
|
|
|
# Gemma 7B has accuracy regression using alpha 1. We set 0.5 instead.
|
|
if model_type == "gemma" and "int8_sq" in qformat:
|
|
quant_cfg["algorithm"] = {"method": "smoothquant", "alpha": 0.5}
|
|
|
|
if qformat == 'fp8' and quantize_lm_head:
|
|
print_rank_0("Quantizing lm_head layer")
|
|
del quant_cfg["quant_cfg"]["*lm_head*"]
|
|
|
|
calib_dataloader = get_calib_dataloader(
|
|
dataset_name_or_dir=calib_dataset,
|
|
tokenizer=tokenizer,
|
|
batch_size=batch_size,
|
|
calib_size=calib_size,
|
|
block_size=calib_max_seq_length,
|
|
device=model.device,
|
|
include_labels=auto_quantize_bits is not None,
|
|
)
|
|
|
|
model = quantize_model(model, quant_cfg, calib_dataloader, batch_size,
|
|
qformat, auto_quantize_bits)
|
|
|
|
with torch.inference_mode():
|
|
if model_type is None:
|
|
logger.info(
|
|
f"Unknown model type {type(model).__name__}. Continue exporting..."
|
|
)
|
|
model_type = f"unknown:{type(model).__name__}"
|
|
|
|
architecture = type(model).__name__
|
|
|
|
export_path = output_dir
|
|
start_time = time.time()
|
|
|
|
# Move meta tensor back to device before exporting.
|
|
remove_hook_from_module(model, recurse=True)
|
|
|
|
QUANT_ALGO = {
|
|
"int8": "INT8",
|
|
"int8_sq": "W8A8_SQ_PER_CHANNEL",
|
|
"fp8": "FP8",
|
|
"int4_awq": "W4A16_AWQ",
|
|
"w4a8_awq": "W4A8_AWQ",
|
|
}
|
|
|
|
if model_type == 'mllama':
|
|
model = model.language_model
|
|
|
|
export_tensorrt_llm_checkpoint(
|
|
model.hf_model if is_enc_dec else model,
|
|
model_type,
|
|
getattr(torch, dtype),
|
|
export_dir=export_path,
|
|
inference_tensor_parallel=tp_size,
|
|
inference_pipeline_parallel=pp_size,
|
|
)
|
|
|
|
export_paths = []
|
|
tensorrt_llm_configs = []
|
|
if not is_enc_dec:
|
|
with open(f"{export_path}/config.json", "r") as f:
|
|
tensorrt_llm_config = json.load(f)
|
|
tensorrt_llm_configs.append(tensorrt_llm_config)
|
|
export_paths.append(export_path)
|
|
else:
|
|
for component in ["encoder", "decoder"]:
|
|
with open(f"{export_path}/{component}/config.json", "r") as f:
|
|
tensorrt_llm_config = json.load(f)
|
|
tensorrt_llm_configs.append(tensorrt_llm_config)
|
|
export_paths.append(f"{export_path}/{component}")
|
|
|
|
for export_path, tensorrt_llm_config in zip(export_paths,
|
|
tensorrt_llm_configs):
|
|
|
|
tensorrt_llm_config["model_type"] = model_type
|
|
if not is_enc_dec:
|
|
tensorrt_llm_config["architecture"] = architecture
|
|
|
|
# Workaround for wo quantization
|
|
if qformat in ["int8_wo", "int4_wo", "full_prec"]:
|
|
if qformat == "int8_wo":
|
|
tensorrt_llm_config["quantization"][
|
|
"quant_algo"] = QuantAlgo.W8A16
|
|
elif qformat == "int4_wo":
|
|
tensorrt_llm_config["quantization"][
|
|
"quant_algo"] = QuantAlgo.W4A16
|
|
else:
|
|
tensorrt_llm_config["quantization"]["quant_algo"] = None
|
|
|
|
# HF uses rope_scaling while tensorrt_llm uses rotary_scaling
|
|
if hasattr(model.config, "rope_scaling"
|
|
) and "rotary_scaling" not in tensorrt_llm_config:
|
|
tensorrt_llm_config["rotary_scaling"] = getattr(
|
|
model.config, "rope_scaling")
|
|
with open(f"{export_path}/config.json", "w") as f:
|
|
json.dump(tensorrt_llm_config, f, indent=4)
|
|
|
|
# Workaround for Modelopt 0.9.x fp8_kv_cache knob issue
|
|
if qformat in ['fp8', 'nvfp4'] and kv_cache_dtype is None:
|
|
with open(f"{export_path}/config.json", "r") as f:
|
|
tensorrt_llm_config = json.load(f)
|
|
tensorrt_llm_config["quantization"][
|
|
"kv_cache_quant_algo"] = None
|
|
with open(f"{export_path}/config.json", "w") as f:
|
|
json.dump(tensorrt_llm_config, f, indent=4)
|
|
|
|
# Workaround for qwen version
|
|
if model_type == 'qwen' or model_type == 'qwen2_vl':
|
|
with open(f"{export_path}/config.json", "r") as f:
|
|
tensorrt_llm_config = json.load(f)
|
|
qwen_config = AutoConfig.from_pretrained(model_dir,
|
|
trust_remote_code=True)
|
|
try:
|
|
from transformers import LlavaOnevisionConfig
|
|
if isinstance(qwen_config, LlavaOnevisionConfig):
|
|
qwen_config = qwen_config.text_config
|
|
except:
|
|
pass
|
|
tensorrt_llm_config["qwen_type"] = qwen_config.model_type
|
|
if qwen_config.model_type == "qwen2":
|
|
tensorrt_llm_config[
|
|
"norm_epsilon"] = qwen_config.rms_norm_eps
|
|
tensorrt_llm_config["rotary_base"] = qwen_config.rope_theta
|
|
tensorrt_llm_config[
|
|
"intermediate_size"] = qwen_config.intermediate_size
|
|
with open(f"{export_path}/config.json", "w") as f:
|
|
json.dump(tensorrt_llm_config, f, indent=4)
|
|
|
|
# Set rotary parameters correctly for chatglm.
|
|
if model_type == 'chatglm':
|
|
rotary_base = 10000.0
|
|
rotary_embedding_scaling = None
|
|
chatglm_config = AutoConfig.from_pretrained(
|
|
model_dir, trust_remote_code=True)
|
|
chatglm_version = tensorrt_llm_config['chatglm_version']
|
|
rope_ratio = tensorrt_llm_config.get('rope_ratio', 1.0)
|
|
if chatglm_version == 'chatglm2':
|
|
if rope_ratio > 1:
|
|
rotary_embedding_scaling = {
|
|
'type': 'linear',
|
|
'factor': rope_ratio
|
|
}
|
|
elif chatglm_version == 'chatglm3':
|
|
rotary_base *= rope_ratio
|
|
|
|
with open(f"{export_path}/config.json", "r") as f:
|
|
tensorrt_llm_config = json.load(f)
|
|
tensorrt_llm_config['rotary_base'] = rotary_base
|
|
tensorrt_llm_config['rotary_scaling'] = rotary_embedding_scaling
|
|
tensorrt_llm_config['rotary_pct'] = 0.5
|
|
with open(f"{export_path}/config.json", "w") as f:
|
|
json.dump(tensorrt_llm_config, f, indent=4)
|
|
|
|
# context parallel
|
|
if cp_size > 1:
|
|
with open(f"{export_path}/config.json", "r") as f:
|
|
tensorrt_llm_config = json.load(f)
|
|
tensorrt_llm_config["mapping"]["cp_size"] = cp_size
|
|
tensorrt_llm_config["mapping"]["attn_tp_size"] = -1
|
|
tensorrt_llm_config["mapping"]["attn_cp_size"] = -1
|
|
tensorrt_llm_config["mapping"]["world_size"] *= cp_size
|
|
with open(f"{export_path}/config.json", "w") as f:
|
|
json.dump(tensorrt_llm_config, f, indent=4)
|
|
|
|
if model_type == 'gptnext':
|
|
with open(f"{export_path}/config.json", "r") as f:
|
|
tensorrt_llm_config = json.load(f)
|
|
if tensorrt_llm_config['max_position_embeddings'] is None:
|
|
tensorrt_llm_config['max_position_embeddings'] = getattr(
|
|
model.config, "n_positions", None)
|
|
with open(f"{export_path}/config.json", "w") as f:
|
|
json.dump(tensorrt_llm_config, f, indent=4)
|
|
|
|
# Workaround for combining medusa head
|
|
# TODO: move these integration into modelopt to avoid redundant reading and writing
|
|
if medusa_model_dir is not None:
|
|
combine_medusa_weight(tp_size, pp_size, export_path,
|
|
num_medusa_heads, num_medusa_layers,
|
|
max_draft_len, medusa_hidden_act,
|
|
medusa_model_dir, quant_medusa_head)
|
|
|
|
# Workaround for mllama
|
|
if model_type == 'mllama':
|
|
from tensorrt_llm.models.mllama.config import MLLaMAConfig
|
|
config = MLLaMAConfig.from_hugging_face(
|
|
model_dir,
|
|
dtype=dtype,
|
|
)
|
|
for key, value in config.to_dict().items():
|
|
if key not in tensorrt_llm_config:
|
|
tensorrt_llm_config[key] = value
|
|
|
|
with open(f"{export_path}/config.json", "w") as f:
|
|
json.dump(tensorrt_llm_config, f, indent=4)
|
|
|
|
end_time = time.time()
|
|
logger.info(
|
|
"Quantized model exported to {} \nTotal time used {:.2f} s.".format(
|
|
export_path, end_time - start_time))
|
|
|
|
# Need to delete the model and release memory explicitly;
|
|
# otherwise torch may retain its GPU memory until a delayed GC running,
|
|
# which reduces the available GPU memory for subsequent stages.
|
|
del model
|
|
release_gc()
|
|
|
|
|
|
def unwrap_model(model, module_instances=None):
|
|
# Reference: https://github.com/NVIDIA/Megatron-LM/blob/core_r0.8.0/megatron/training/utils.py
|
|
from megatron.core import DistributedDataParallel as DDP
|
|
from megatron.core.transformer.module import Float16Module
|
|
|
|
if module_instances is None:
|
|
module_instances = (DDP, Float16Module)
|
|
|
|
return_list = True
|
|
if not isinstance(model, list):
|
|
model = [model]
|
|
return_list = False
|
|
unwrapped_model = []
|
|
for model_module in model:
|
|
while isinstance(model_module, module_instances):
|
|
model_module = model_module.module
|
|
unwrapped_model.append(model_module)
|
|
if not return_list:
|
|
return unwrapped_model[0]
|
|
return unwrapped_model
|
|
|
|
|
|
def get_nemo_calib_dataloader(dataset_name_or_dir="cnn_dailymail",
|
|
batch_size=64,
|
|
calib_size=512,
|
|
max_sequence_length=512):
|
|
if dataset_name_or_dir == "pileval":
|
|
dataset = load_dataset(
|
|
"json",
|
|
data_files="https://the-eye.eu/public/AI/pile/val.jsonl.zst",
|
|
split="train",
|
|
trust_remote_code=True)
|
|
text_column = "text"
|
|
elif "wikitext" in dataset_name_or_dir:
|
|
dataset = load_dataset(dataset_name_or_dir,
|
|
"wikitext-103-v1",
|
|
split="train",
|
|
trust_remote_code=True)
|
|
text_column = "text"
|
|
elif "cnn_dailymail" in dataset_name_or_dir:
|
|
dataset = load_dataset(dataset_name_or_dir,
|
|
name="3.0.0",
|
|
split="train",
|
|
trust_remote_code=True)
|
|
text_column = "article"
|
|
elif os.path.isdir(dataset_name_or_dir):
|
|
logger.info(
|
|
f"Recognized local dataset repo {dataset_name_or_dir} for calibration; "
|
|
"assuming the calibration data are in the train split and text column."
|
|
)
|
|
dataset = load_dataset(dataset_name_or_dir,
|
|
split="train",
|
|
trust_remote_code=True)
|
|
text_column = "text"
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Unsupported dataset name or local repo directory: {dataset_name_or_dir}."
|
|
)
|
|
calib_size = max(min(len(dataset), calib_size), batch_size)
|
|
for i in range(calib_size // batch_size):
|
|
batch = dataset[i * batch_size:(i + 1) * batch_size][text_column]
|
|
for j in range(len(batch)):
|
|
batch[j] = batch[j][:max_sequence_length]
|
|
yield batch
|
|
|
|
|
|
def quantize_nemo_and_export(*, nemo_ckpt_path, decoder_type, calib_dataset,
|
|
calib_tp_size, calib_pp_size, dtype, qformat,
|
|
kv_cache_dtype, calib_size, batch_size,
|
|
calib_max_seq_length, awq_block_size, output_dir,
|
|
tp_size, pp_size, cp_size, seed):
|
|
try:
|
|
import modelopt # noqa
|
|
except ImportError as e:
|
|
logger.error(
|
|
"Failed to import modelopt, pls check the modelopt installation. Currently it is known to be unsupported on Windows OS"
|
|
)
|
|
raise e
|
|
|
|
import modelopt.torch.quantization as mtq
|
|
from megatron.core import parallel_state
|
|
from megatron.core.transformer.module import Float16Module
|
|
from modelopt.torch.export import export_tensorrt_llm_checkpoint
|
|
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import \
|
|
MegatronGPTModel
|
|
from nemo.collections.nlp.modules.common.text_generation_strategy import \
|
|
GPTModelTextGenerationStrategy
|
|
from nemo.collections.nlp.parts.nlp_overrides import (
|
|
NLPDDPStrategy, NLPSaveRestoreConnector)
|
|
from nemo.utils.model_utils import load_config, save_artifacts
|
|
from omegaconf.omegaconf import open_dict
|
|
from pytorch_lightning.trainer.trainer import Trainer
|
|
|
|
if not torch.cuda.is_available():
|
|
raise EnvironmentError("GPU is required for the inference.")
|
|
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
|
|
model_cfg = load_config(nemo_ckpt_path)
|
|
|
|
# dtype is used for non-quantized layers
|
|
supported_dtype = ["auto", "float16", "bfloat16"]
|
|
assert dtype in supported_dtype, f"{dtype} not supported. Supported dtypes are {supported_dtype}"
|
|
|
|
if dtype == 'auto':
|
|
dtype = model_cfg.get('precision', None)
|
|
if dtype is None:
|
|
dtype = 'float16'
|
|
elif 'bf16' in dtype or 'bfloat16' in dtype:
|
|
dtype = 'bfloat16'
|
|
else:
|
|
dtype = 'float16'
|
|
logger.info(f"Specified dtype 'auto'; inferred dtype {dtype!r}.")
|
|
torch_dtype = getattr(torch, dtype)
|
|
|
|
with open_dict(model_cfg):
|
|
model_cfg.activations_checkpoint_method = None
|
|
model_cfg.activations_checkpoint_granularity = None
|
|
model_cfg.tensor_model_parallel_size = calib_tp_size
|
|
model_cfg.pipeline_model_parallel_size = calib_pp_size
|
|
model_cfg.sequence_parallel = False
|
|
# Only custom modelopt spec is supported for PTQ: this custom spec is largely based on local Megatron-LM
|
|
# layer definitions to avoid Transformer Engine implementations that are currently not supported.
|
|
model_cfg.name = "modelopt"
|
|
|
|
# trainer required for restoring model parallel models
|
|
trainer_config = {
|
|
'devices': calib_tp_size * calib_pp_size,
|
|
'num_nodes': 1,
|
|
'accelerator': 'gpu',
|
|
'logger': False,
|
|
'precision': model_cfg.precision,
|
|
'enable_checkpointing': False,
|
|
}
|
|
trainer = Trainer(strategy=NLPDDPStrategy(), **trainer_config)
|
|
connector = NLPSaveRestoreConnector()
|
|
|
|
model = MegatronGPTModel.restore_from(
|
|
restore_path=nemo_ckpt_path,
|
|
trainer=trainer,
|
|
override_config_path=model_cfg,
|
|
save_restore_connector=connector,
|
|
)
|
|
model.freeze()
|
|
|
|
print_rank_0(model)
|
|
# Have to turn off activations_checkpoint_method for inference
|
|
try:
|
|
model.model.module.language_model.encoder.activations_checkpoint_method = None
|
|
except AttributeError:
|
|
pass
|
|
|
|
# Check whether the DDP is initialized
|
|
if parallel_state.is_unitialized():
|
|
|
|
def dummy():
|
|
return
|
|
|
|
if model.trainer.strategy.launcher is not None:
|
|
model.trainer.strategy.launcher.launch(dummy, trainer=model.trainer)
|
|
model.trainer.strategy.setup_environment()
|
|
|
|
inference_config = {
|
|
'greedy': False,
|
|
'top_k': 0,
|
|
'top_p': 0.9,
|
|
'temperature': 1.0,
|
|
'add_BOS': True,
|
|
'tokens_to_generate': 30,
|
|
'all_probs': False,
|
|
'repetition_penalty': 1.2,
|
|
'min_tokens_to_generate': 0,
|
|
'compute_logprob': False,
|
|
'batch_size': batch_size,
|
|
'max_context_length': calib_max_seq_length,
|
|
'strategy': GPTModelTextGenerationStrategy(model),
|
|
}
|
|
model.set_inference_config(inference_config)
|
|
|
|
if qformat in ["full_prec", "int8_wo", "int4_wo"
|
|
] and kv_cache_dtype is None:
|
|
print_rank_0(f"No quantization applied, export {dtype} model")
|
|
else:
|
|
if "awq" in qformat:
|
|
if calib_size > 32:
|
|
print_rank_0(
|
|
"AWQ calibration could take longer with calib_size ="
|
|
f" {calib_size}, Using calib_size=32 instead")
|
|
calib_size = 32
|
|
print_rank_0(
|
|
"\nAWQ calibration could take longer than other calibration methods. Please"
|
|
" increase the batch size to speed up the calibration process. Batch size can be"
|
|
" set by adding the argument inference.batch_size=<batch_size> to the command"
|
|
" line.\n")
|
|
|
|
dataloader = get_nemo_calib_dataloader(
|
|
dataset_name_or_dir=calib_dataset,
|
|
batch_size=batch_size,
|
|
calib_size=calib_size,
|
|
max_sequence_length=calib_max_seq_length,
|
|
)
|
|
|
|
# =================== Start Quantization ====================
|
|
if qformat in quant_cfg_choices():
|
|
quant_cfg = quant_cfg_choices()[qformat]
|
|
else:
|
|
raise ValueError(f"Unsupported quantization format: {qformat}")
|
|
|
|
if "awq" in qformat:
|
|
quant_cfg = copy.deepcopy(quant_cfg_choices()[qformat])
|
|
weight_quantizer = quant_cfg["quant_cfg"][
|
|
"*weight_quantizer"] # type: ignore
|
|
if isinstance(weight_quantizer, list):
|
|
weight_quantizer = weight_quantizer[0]
|
|
weight_quantizer["block_sizes"][-1] = awq_block_size
|
|
|
|
if kv_cache_dtype is not None:
|
|
if kv_cache_dtype == "fp8":
|
|
for value in KV_CACHE_CFG.values():
|
|
value.update({"num_bits": (4, 3)}) # type: ignore
|
|
quant_cfg["quant_cfg"].update(KV_CACHE_CFG) # type: ignore
|
|
|
|
print_rank_0(quant_cfg)
|
|
|
|
# Always turn on FP8 kv cache to save memory footprint.
|
|
# For int8_sq, we use int8 kv cache.
|
|
# TODO: Investigate why enabling FP8 kv cache will cause accuracy regressions for nemotron.
|
|
# quant_cfg["quant_cfg"]["*output_quantizer"] = { # type: ignore[index]
|
|
# "num_bits": 8 if args.qformat == "int8_sq" else (4, 3),
|
|
# "axis": None,
|
|
# "enable": args.decoder_type != "gptnext",
|
|
# }
|
|
|
|
dataloader = [data for data in dataloader]
|
|
|
|
def forward_loop(model):
|
|
for i, batch in enumerate(dataloader):
|
|
print_rank_0(f"Calibrating batch {i}")
|
|
model.predict_step(batch, i)
|
|
|
|
start_time = time.time()
|
|
model = mtq.quantize(model, quant_cfg,
|
|
forward_loop) # type: ignore[arg-type]
|
|
end_time = time.time()
|
|
tot_time = end_time - start_time
|
|
tput = calib_size / tot_time
|
|
print_rank_0(
|
|
f"Quantization done. Total time used {tot_time}s. Throughput {tput} samples/s"
|
|
)
|
|
# =================== End Quantization ======================
|
|
|
|
if decoder_type == "gptnext":
|
|
# We found squared_relu may have an under-calibration problem.
|
|
# Clamp the scaling_factor with a min threshold to avoid under-calibration.
|
|
maxbound = 0
|
|
if qformat == "fp8":
|
|
maxbound = 448
|
|
elif qformat == "int8_sq":
|
|
maxbound = 127
|
|
model = mtq.postprocess_amax(
|
|
model, "*input_quantizer",
|
|
lambda amax: torch.clamp(amax, min=0.01 * maxbound))
|
|
|
|
if torch.distributed.get_rank() == 0:
|
|
mtq.print_quant_summary(model)
|
|
|
|
if model_cfg.megatron_amp_O2:
|
|
model.model = unwrap_model(model.model, Float16Module)
|
|
|
|
start_time = time.time()
|
|
export_tensorrt_llm_checkpoint(
|
|
model,
|
|
decoder_type,
|
|
torch_dtype,
|
|
export_dir=output_dir,
|
|
inference_tensor_parallel=tp_size,
|
|
inference_pipeline_parallel=pp_size,
|
|
)
|
|
|
|
# context parallel
|
|
if cp_size > 1:
|
|
with open(f"{export_path}/config.json", "r") as f:
|
|
tensorrt_llm_config = json.load(f)
|
|
tensorrt_llm_config["mapping"]["cp_size"] = cp_size
|
|
tensorrt_llm_config["mapping"]["world_size"] *= cp_size
|
|
with open(f"{export_path}/config.json", "w") as f:
|
|
json.dump(tensorrt_llm_config, f, indent=4)
|
|
|
|
end_time = time.time()
|
|
print_rank_0(
|
|
f"Model config exported to: {output_dir}. Total time used {end_time - start_time}s"
|
|
)
|
|
if torch.distributed.get_rank() == 0:
|
|
save_artifacts(model, output_dir, use_abspath=True)
|
|
|
|
# Need to delete the model and release memory explicitly;
|
|
# otherwise torch may retain its GPU memory until a delayed GC running,
|
|
# which reduces the available GPU memory for subsequent stages.
|
|
del model
|
|
release_gc()
|