mirror of
https://github.com/langgenius/dify.git
synced 2026-02-02 00:51:49 +08:00
fix(api): fix IRIS hybrid search returning zero results (#31309)
Co-authored-by: Tomo Okuyama <tomo.okuyama@intersystems.com>
This commit is contained in:
parent
67eb8c052d
commit
0772d49257
@ -154,7 +154,7 @@ class IrisConnectionPool:
|
||||
# Add to cache to skip future checks
|
||||
self._schemas_initialized.add(schema)
|
||||
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
conn.rollback()
|
||||
logger.exception("Failed to ensure schema %s exists", schema)
|
||||
raise
|
||||
@ -177,6 +177,9 @@ class IrisConnectionPool:
|
||||
class IrisVector(BaseVector):
|
||||
"""IRIS vector database implementation using native VECTOR type and HNSW indexing."""
|
||||
|
||||
# Fallback score for full-text search when Rank function unavailable or TEXT_INDEX disabled
|
||||
_FULL_TEXT_FALLBACK_SCORE = 0.5
|
||||
|
||||
def __init__(self, collection_name: str, config: IrisVectorConfig) -> None:
|
||||
super().__init__(collection_name)
|
||||
self.config = config
|
||||
@ -272,41 +275,131 @@ class IrisVector(BaseVector):
|
||||
return docs
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
"""Search documents by full-text using iFind index or fallback to LIKE search."""
|
||||
"""Search documents by full-text using iFind index with BM25 relevance scoring.
|
||||
|
||||
When IRIS_TEXT_INDEX is enabled, this method uses the auto-generated Rank
|
||||
function from %iFind.Index.Basic to calculate BM25 relevance scores. The Rank
|
||||
function is automatically created with naming: {schema}.{table_name}_{index}Rank
|
||||
|
||||
Args:
|
||||
query: Search query string
|
||||
**kwargs: Optional parameters including top_k, document_ids_filter
|
||||
|
||||
Returns:
|
||||
List of Document objects with relevance scores in metadata["score"]
|
||||
"""
|
||||
top_k = kwargs.get("top_k", 5)
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
|
||||
with self._get_cursor() as cursor:
|
||||
if self.config.IRIS_TEXT_INDEX:
|
||||
# Use iFind full-text search with index
|
||||
# Use iFind full-text search with auto-generated Rank function
|
||||
text_index_name = f"idx_{self.table_name}_text"
|
||||
# IRIS removes underscores from function names
|
||||
table_no_underscore = self.table_name.replace("_", "")
|
||||
index_no_underscore = text_index_name.replace("_", "")
|
||||
rank_function = f"{self.schema}.{table_no_underscore}_{index_no_underscore}Rank"
|
||||
|
||||
# Build WHERE clause with document ID filter if provided
|
||||
where_clause = f"WHERE %ID %FIND search_index({text_index_name}, ?)"
|
||||
# First param for Rank function, second for FIND
|
||||
params = [query, query]
|
||||
|
||||
if document_ids_filter:
|
||||
# Add document ID filter
|
||||
placeholders = ",".join("?" * len(document_ids_filter))
|
||||
where_clause += f" AND JSON_VALUE(meta, '$.document_id') IN ({placeholders})"
|
||||
params.extend(document_ids_filter)
|
||||
|
||||
sql = f"""
|
||||
SELECT TOP {top_k} id, text, meta
|
||||
SELECT TOP {top_k}
|
||||
id,
|
||||
text,
|
||||
meta,
|
||||
{rank_function}(%ID, ?) AS score
|
||||
FROM {self.schema}.{self.table_name}
|
||||
WHERE %ID %FIND search_index({text_index_name}, ?)
|
||||
{where_clause}
|
||||
ORDER BY score DESC
|
||||
"""
|
||||
cursor.execute(sql, (query,))
|
||||
|
||||
logger.debug(
|
||||
"iFind search: query='%s', index='%s', rank='%s'",
|
||||
query,
|
||||
text_index_name,
|
||||
rank_function,
|
||||
)
|
||||
|
||||
try:
|
||||
cursor.execute(sql, params)
|
||||
except Exception: # pylint: disable=broad-exception-caught
|
||||
# Fallback to query without Rank function if it fails
|
||||
logger.warning(
|
||||
"Rank function '%s' failed, using fixed score",
|
||||
rank_function,
|
||||
exc_info=True,
|
||||
)
|
||||
sql_fallback = f"""
|
||||
SELECT TOP {top_k} id, text, meta, {self._FULL_TEXT_FALLBACK_SCORE} AS score
|
||||
FROM {self.schema}.{self.table_name}
|
||||
{where_clause}
|
||||
"""
|
||||
# Skip first param (for Rank function)
|
||||
cursor.execute(sql_fallback, params[1:])
|
||||
else:
|
||||
# Fallback to LIKE search (inefficient for large datasets)
|
||||
# Escape special characters for LIKE clause to prevent SQL injection
|
||||
from libs.helper import escape_like_pattern
|
||||
# Fallback to LIKE search (IRIS_TEXT_INDEX disabled)
|
||||
from libs.helper import ( # pylint: disable=import-outside-toplevel
|
||||
escape_like_pattern,
|
||||
)
|
||||
|
||||
escaped_query = escape_like_pattern(query)
|
||||
query_pattern = f"%{escaped_query}%"
|
||||
|
||||
# Build WHERE clause with document ID filter if provided
|
||||
where_clause = "WHERE text LIKE ? ESCAPE '\\\\'"
|
||||
params = [query_pattern]
|
||||
|
||||
if document_ids_filter:
|
||||
placeholders = ",".join("?" * len(document_ids_filter))
|
||||
where_clause += f" AND JSON_VALUE(meta, '$.document_id') IN ({placeholders})"
|
||||
params.extend(document_ids_filter)
|
||||
|
||||
sql = f"""
|
||||
SELECT TOP {top_k} id, text, meta
|
||||
SELECT TOP {top_k} id, text, meta, {self._FULL_TEXT_FALLBACK_SCORE} AS score
|
||||
FROM {self.schema}.{self.table_name}
|
||||
WHERE text LIKE ? ESCAPE '\\'
|
||||
{where_clause}
|
||||
ORDER BY LENGTH(text) ASC
|
||||
"""
|
||||
cursor.execute(sql, (query_pattern,))
|
||||
|
||||
logger.debug(
|
||||
"LIKE fallback (TEXT_INDEX disabled): query='%s'",
|
||||
query_pattern,
|
||||
)
|
||||
cursor.execute(sql, params)
|
||||
|
||||
docs = []
|
||||
for row in cursor.fetchall():
|
||||
if len(row) >= 3:
|
||||
metadata = json.loads(row[2]) if row[2] else {}
|
||||
docs.append(Document(page_content=row[1], metadata=metadata))
|
||||
# Expecting 4 columns: id, text, meta, score
|
||||
if len(row) >= 4:
|
||||
text_content = row[1]
|
||||
meta_str = row[2]
|
||||
score_value = row[3]
|
||||
|
||||
metadata = json.loads(meta_str) if meta_str else {}
|
||||
# Add score to metadata for hybrid search compatibility
|
||||
score = float(score_value) if score_value is not None else 0.0
|
||||
metadata["score"] = score
|
||||
|
||||
docs.append(Document(page_content=text_content, metadata=metadata))
|
||||
|
||||
logger.info(
|
||||
"Full-text search completed: query='%s', results=%d/%d",
|
||||
query,
|
||||
len(docs),
|
||||
top_k,
|
||||
)
|
||||
|
||||
if not docs:
|
||||
logger.info("Full-text search for '%s' returned no results", query)
|
||||
logger.warning("Full-text search for '%s' returned no results", query)
|
||||
|
||||
return docs
|
||||
|
||||
@ -370,7 +463,11 @@ class IrisVector(BaseVector):
|
||||
AS %iFind.Index.Basic
|
||||
(LANGUAGE = '{language}', LOWER = 1, INDEXOPTION = 0)
|
||||
"""
|
||||
logger.info("Creating text index: %s with language: %s", text_index_name, language)
|
||||
logger.info(
|
||||
"Creating text index: %s with language: %s",
|
||||
text_index_name,
|
||||
language,
|
||||
)
|
||||
logger.info("SQL for text index: %s", sql_text_index)
|
||||
cursor.execute(sql_text_index)
|
||||
logger.info("Text index created successfully: %s", text_index_name)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user