Merge branch 'feat/agent-node-v2' into feat/support-agent-sandbox

This commit is contained in:
Novice 2026-01-09 14:19:27 +08:00
commit 1557f48740
No known key found for this signature in database
GPG Key ID: EE3F68E3105DAAAB
294 changed files with 14621 additions and 3601 deletions

View File

@ -4,6 +4,6 @@
"context7@claude-plugins-official": true,
"typescript-lsp@claude-plugins-official": true,
"pyright-lsp@claude-plugins-official": true,
"ralph-wiggum@claude-plugins-official": true
"ralph-loop@claude-plugins-official": true
}
}

View File

@ -0,0 +1,355 @@
---
name: skill-creator
description: Guide for creating effective skills. This skill should be used when users want to create a new skill (or update an existing skill) that extends Claude's capabilities with specialized knowledge, workflows, or tool integrations.
---
# Skill Creator
This skill provides guidance for creating effective skills.
## About Skills
Skills are modular, self-contained packages that extend Claude's capabilities by providing
specialized knowledge, workflows, and tools. Think of them as "onboarding guides" for specific
domains or tasks—they transform Claude from a general-purpose agent into a specialized agent
equipped with procedural knowledge that no model can fully possess.
### What Skills Provide
1. Specialized workflows - Multi-step procedures for specific domains
2. Tool integrations - Instructions for working with specific file formats or APIs
3. Domain expertise - Company-specific knowledge, schemas, business logic
4. Bundled resources - Scripts, references, and assets for complex and repetitive tasks
## Core Principles
### Concise is Key
The context window is a public good. Skills share the context window with everything else Claude needs: system prompt, conversation history, other Skills' metadata, and the actual user request.
**Default assumption: Claude is already very smart.** Only add context Claude doesn't already have. Challenge each piece of information: "Does Claude really need this explanation?" and "Does this paragraph justify its token cost?"
Prefer concise examples over verbose explanations.
### Set Appropriate Degrees of Freedom
Match the level of specificity to the task's fragility and variability:
**High freedom (text-based instructions)**: Use when multiple approaches are valid, decisions depend on context, or heuristics guide the approach.
**Medium freedom (pseudocode or scripts with parameters)**: Use when a preferred pattern exists, some variation is acceptable, or configuration affects behavior.
**Low freedom (specific scripts, few parameters)**: Use when operations are fragile and error-prone, consistency is critical, or a specific sequence must be followed.
Think of Claude as exploring a path: a narrow bridge with cliffs needs specific guardrails (low freedom), while an open field allows many routes (high freedom).
### Anatomy of a Skill
Every skill consists of a required SKILL.md file and optional bundled resources:
```
skill-name/
├── SKILL.md (required)
│ ├── YAML frontmatter metadata (required)
│ │ ├── name: (required)
│ │ └── description: (required)
│ └── Markdown instructions (required)
└── Bundled Resources (optional)
├── scripts/ - Executable code (Python/Bash/etc.)
├── references/ - Documentation intended to be loaded into context as needed
└── assets/ - Files used in output (templates, icons, fonts, etc.)
```
#### SKILL.md (required)
Every SKILL.md consists of:
- **Frontmatter** (YAML): Contains `name` and `description` fields. These are the only fields that Claude reads to determine when the skill gets used, thus it is very important to be clear and comprehensive in describing what the skill is, and when it should be used.
- **Body** (Markdown): Instructions and guidance for using the skill. Only loaded AFTER the skill triggers (if at all).
#### Bundled Resources (optional)
##### Scripts (`scripts/`)
Executable code (Python/Bash/etc.) for tasks that require deterministic reliability or are repeatedly rewritten.
- **When to include**: When the same code is being rewritten repeatedly or deterministic reliability is needed
- **Example**: `scripts/rotate_pdf.py` for PDF rotation tasks
- **Benefits**: Token efficient, deterministic, may be executed without loading into context
- **Note**: Scripts may still need to be read by Claude for patching or environment-specific adjustments
##### References (`references/`)
Documentation and reference material intended to be loaded as needed into context to inform Claude's process and thinking.
- **When to include**: For documentation that Claude should reference while working
- **Examples**: `references/finance.md` for financial schemas, `references/mnda.md` for company NDA template, `references/policies.md` for company policies, `references/api_docs.md` for API specifications
- **Use cases**: Database schemas, API documentation, domain knowledge, company policies, detailed workflow guides
- **Benefits**: Keeps SKILL.md lean, loaded only when Claude determines it's needed
- **Best practice**: If files are large (>10k words), include grep search patterns in SKILL.md
- **Avoid duplication**: Information should live in either SKILL.md or references files, not both. Prefer references files for detailed information unless it's truly core to the skill—this keeps SKILL.md lean while making information discoverable without hogging the context window. Keep only essential procedural instructions and workflow guidance in SKILL.md; move detailed reference material, schemas, and examples to references files.
##### Assets (`assets/`)
Files not intended to be loaded into context, but rather used within the output Claude produces.
- **When to include**: When the skill needs files that will be used in the final output
- **Examples**: `assets/logo.png` for brand assets, `assets/slides.pptx` for PowerPoint templates, `assets/frontend-template/` for HTML/React boilerplate, `assets/font.ttf` for typography
- **Use cases**: Templates, images, icons, boilerplate code, fonts, sample documents that get copied or modified
- **Benefits**: Separates output resources from documentation, enables Claude to use files without loading them into context
#### What to Not Include in a Skill
A skill should only contain essential files that directly support its functionality. Do NOT create extraneous documentation or auxiliary files, including:
- README.md
- INSTALLATION_GUIDE.md
- QUICK_REFERENCE.md
- CHANGELOG.md
- etc.
The skill should only contain the information needed for an AI agent to do the job at hand. It should not contain auxilary context about the process that went into creating it, setup and testing procedures, user-facing documentation, etc. Creating additional documentation files just adds clutter and confusion.
### Progressive Disclosure Design Principle
Skills use a three-level loading system to manage context efficiently:
1. **Metadata (name + description)** - Always in context (~100 words)
2. **SKILL.md body** - When skill triggers (<5k words)
3. **Bundled resources** - As needed by Claude (Unlimited because scripts can be executed without reading into context window)
#### Progressive Disclosure Patterns
Keep SKILL.md body to the essentials and under 500 lines to minimize context bloat. Split content into separate files when approaching this limit. When splitting out content into other files, it is very important to reference them from SKILL.md and describe clearly when to read them, to ensure the reader of the skill knows they exist and when to use them.
**Key principle:** When a skill supports multiple variations, frameworks, or options, keep only the core workflow and selection guidance in SKILL.md. Move variant-specific details (patterns, examples, configuration) into separate reference files.
**Pattern 1: High-level guide with references**
```markdown
# PDF Processing
## Quick start
Extract text with pdfplumber:
[code example]
## Advanced features
- **Form filling**: See [FORMS.md](FORMS.md) for complete guide
- **API reference**: See [REFERENCE.md](REFERENCE.md) for all methods
- **Examples**: See [EXAMPLES.md](EXAMPLES.md) for common patterns
```
Claude loads FORMS.md, REFERENCE.md, or EXAMPLES.md only when needed.
**Pattern 2: Domain-specific organization**
For Skills with multiple domains, organize content by domain to avoid loading irrelevant context:
```
bigquery-skill/
├── SKILL.md (overview and navigation)
└── reference/
├── finance.md (revenue, billing metrics)
├── sales.md (opportunities, pipeline)
├── product.md (API usage, features)
└── marketing.md (campaigns, attribution)
```
When a user asks about sales metrics, Claude only reads sales.md.
Similarly, for skills supporting multiple frameworks or variants, organize by variant:
```
cloud-deploy/
├── SKILL.md (workflow + provider selection)
└── references/
├── aws.md (AWS deployment patterns)
├── gcp.md (GCP deployment patterns)
└── azure.md (Azure deployment patterns)
```
When the user chooses AWS, Claude only reads aws.md.
**Pattern 3: Conditional details**
Show basic content, link to advanced content:
```markdown
# DOCX Processing
## Creating documents
Use docx-js for new documents. See [DOCX-JS.md](DOCX-JS.md).
## Editing documents
For simple edits, modify the XML directly.
**For tracked changes**: See [REDLINING.md](REDLINING.md)
**For OOXML details**: See [OOXML.md](OOXML.md)
```
Claude reads REDLINING.md or OOXML.md only when the user needs those features.
**Important guidelines:**
- **Avoid deeply nested references** - Keep references one level deep from SKILL.md. All reference files should link directly from SKILL.md.
- **Structure longer reference files** - For files longer than 100 lines, include a table of contents at the top so Claude can see the full scope when previewing.
## Skill Creation Process
Skill creation involves these steps:
1. Understand the skill with concrete examples
2. Plan reusable skill contents (scripts, references, assets)
3. Initialize the skill (run init_skill.py)
4. Edit the skill (implement resources and write SKILL.md)
5. Package the skill (run package_skill.py)
6. Iterate based on real usage
Follow these steps in order, skipping only if there is a clear reason why they are not applicable.
### Step 1: Understanding the Skill with Concrete Examples
Skip this step only when the skill's usage patterns are already clearly understood. It remains valuable even when working with an existing skill.
To create an effective skill, clearly understand concrete examples of how the skill will be used. This understanding can come from either direct user examples or generated examples that are validated with user feedback.
For example, when building an image-editor skill, relevant questions include:
- "What functionality should the image-editor skill support? Editing, rotating, anything else?"
- "Can you give some examples of how this skill would be used?"
- "I can imagine users asking for things like 'Remove the red-eye from this image' or 'Rotate this image'. Are there other ways you imagine this skill being used?"
- "What would a user say that should trigger this skill?"
To avoid overwhelming users, avoid asking too many questions in a single message. Start with the most important questions and follow up as needed for better effectiveness.
Conclude this step when there is a clear sense of the functionality the skill should support.
### Step 2: Planning the Reusable Skill Contents
To turn concrete examples into an effective skill, analyze each example by:
1. Considering how to execute on the example from scratch
2. Identifying what scripts, references, and assets would be helpful when executing these workflows repeatedly
Example: When building a `pdf-editor` skill to handle queries like "Help me rotate this PDF," the analysis shows:
1. Rotating a PDF requires re-writing the same code each time
2. A `scripts/rotate_pdf.py` script would be helpful to store in the skill
Example: When designing a `frontend-webapp-builder` skill for queries like "Build me a todo app" or "Build me a dashboard to track my steps," the analysis shows:
1. Writing a frontend webapp requires the same boilerplate HTML/React each time
2. An `assets/hello-world/` template containing the boilerplate HTML/React project files would be helpful to store in the skill
Example: When building a `big-query` skill to handle queries like "How many users have logged in today?" the analysis shows:
1. Querying BigQuery requires re-discovering the table schemas and relationships each time
2. A `references/schema.md` file documenting the table schemas would be helpful to store in the skill
To establish the skill's contents, analyze each concrete example to create a list of the reusable resources to include: scripts, references, and assets.
### Step 3: Initializing the Skill
At this point, it is time to actually create the skill.
Skip this step only if the skill being developed already exists, and iteration or packaging is needed. In this case, continue to the next step.
When creating a new skill from scratch, always run the `init_skill.py` script. The script conveniently generates a new template skill directory that automatically includes everything a skill requires, making the skill creation process much more efficient and reliable.
Usage:
```bash
scripts/init_skill.py <skill-name> --path <output-directory>
```
The script:
- Creates the skill directory at the specified path
- Generates a SKILL.md template with proper frontmatter and TODO placeholders
- Creates example resource directories: `scripts/`, `references/`, and `assets/`
- Adds example files in each directory that can be customized or deleted
After initialization, customize or remove the generated SKILL.md and example files as needed.
### Step 4: Edit the Skill
When editing the (newly-generated or existing) skill, remember that the skill is being created for another instance of Claude to use. Include information that would be beneficial and non-obvious to Claude. Consider what procedural knowledge, domain-specific details, or reusable assets would help another Claude instance execute these tasks more effectively.
#### Learn Proven Design Patterns
Consult these helpful guides based on your skill's needs:
- **Multi-step processes**: See references/workflows.md for sequential workflows and conditional logic
- **Specific output formats or quality standards**: See references/output-patterns.md for template and example patterns
These files contain established best practices for effective skill design.
#### Start with Reusable Skill Contents
To begin implementation, start with the reusable resources identified above: `scripts/`, `references/`, and `assets/` files. Note that this step may require user input. For example, when implementing a `brand-guidelines` skill, the user may need to provide brand assets or templates to store in `assets/`, or documentation to store in `references/`.
Added scripts must be tested by actually running them to ensure there are no bugs and that the output matches what is expected. If there are many similar scripts, only a representative sample needs to be tested to ensure confidence that they all work while balancing time to completion.
Any example files and directories not needed for the skill should be deleted. The initialization script creates example files in `scripts/`, `references/`, and `assets/` to demonstrate structure, but most skills won't need all of them.
#### Update SKILL.md
**Writing Guidelines:** Always use imperative/infinitive form.
##### Frontmatter
Write the YAML frontmatter with `name` and `description`:
- `name`: The skill name
- `description`: This is the primary triggering mechanism for your skill, and helps Claude understand when to use the skill.
- Include both what the Skill does and specific triggers/contexts for when to use it.
- Include all "when to use" information here - Not in the body. The body is only loaded after triggering, so "When to Use This Skill" sections in the body are not helpful to Claude.
- Example description for a `docx` skill: "Comprehensive document creation, editing, and analysis with support for tracked changes, comments, formatting preservation, and text extraction. Use when Claude needs to work with professional documents (.docx files) for: (1) Creating new documents, (2) Modifying or editing content, (3) Working with tracked changes, (4) Adding comments, or any other document tasks"
Do not include any other fields in YAML frontmatter.
##### Body
Write instructions for using the skill and its bundled resources.
### Step 5: Packaging a Skill
Once development of the skill is complete, it must be packaged into a distributable .skill file that gets shared with the user. The packaging process automatically validates the skill first to ensure it meets all requirements:
```bash
scripts/package_skill.py <path/to/skill-folder>
```
Optional output directory specification:
```bash
scripts/package_skill.py <path/to/skill-folder> ./dist
```
The packaging script will:
1. **Validate** the skill automatically, checking:
- YAML frontmatter format and required fields
- Skill naming conventions and directory structure
- Description completeness and quality
- File organization and resource references
2. **Package** the skill if validation passes, creating a .skill file named after the skill (e.g., `my-skill.skill`) that includes all files and maintains the proper directory structure for distribution. The .skill file is a zip file with a .skill extension.
If validation fails, the script will report the errors and exit without creating a package. Fix any validation errors and run the packaging command again.
### Step 6: Iterate
After testing the skill, users may request improvements. Often this happens right after using the skill, with fresh context of how the skill performed.
**Iteration workflow:**
1. Use the skill on real tasks
2. Notice struggles or inefficiencies
3. Identify how SKILL.md or bundled resources should be updated
4. Implement changes and test again

View File

@ -0,0 +1,86 @@
# Output Patterns
Use these patterns when skills need to produce consistent, high-quality output.
## Template Pattern
Provide templates for output format. Match the level of strictness to your needs.
**For strict requirements (like API responses or data formats):**
```markdown
## Report structure
ALWAYS use this exact template structure:
# [Analysis Title]
## Executive summary
[One-paragraph overview of key findings]
## Key findings
- Finding 1 with supporting data
- Finding 2 with supporting data
- Finding 3 with supporting data
## Recommendations
1. Specific actionable recommendation
2. Specific actionable recommendation
```
**For flexible guidance (when adaptation is useful):**
```markdown
## Report structure
Here is a sensible default format, but use your best judgment:
# [Analysis Title]
## Executive summary
[Overview]
## Key findings
[Adapt sections based on what you discover]
## Recommendations
[Tailor to the specific context]
Adjust sections as needed for the specific analysis type.
```
## Examples Pattern
For skills where output quality depends on seeing examples, provide input/output pairs:
```markdown
## Commit message format
Generate commit messages following these examples:
**Example 1:**
Input: Added user authentication with JWT tokens
Output:
```
feat(auth): implement JWT-based authentication
Add login endpoint and token validation middleware
```
**Example 2:**
Input: Fixed bug where dates displayed incorrectly in reports
Output:
```
fix(reports): correct date formatting in timezone conversion
Use UTC timestamps consistently across report generation
```
Follow this style: type(scope): brief description, then detailed explanation.
```
Examples help Claude understand the desired style and level of detail more clearly than descriptions alone.

View File

@ -0,0 +1,28 @@
# Workflow Patterns
## Sequential Workflows
For complex tasks, break operations into clear, sequential steps. It is often helpful to give Claude an overview of the process towards the beginning of SKILL.md:
```markdown
Filling a PDF form involves these steps:
1. Analyze the form (run analyze_form.py)
2. Create field mapping (edit fields.json)
3. Validate mapping (run validate_fields.py)
4. Fill the form (run fill_form.py)
5. Verify output (run verify_output.py)
```
## Conditional Workflows
For tasks with branching logic, guide Claude through decision points:
```markdown
1. Determine the modification type:
**Creating new content?** → Follow "Creation workflow" below
**Editing existing content?** → Follow "Editing workflow" below
2. Creation workflow: [steps]
3. Editing workflow: [steps]
```

View File

@ -0,0 +1,300 @@
#!/usr/bin/env python3
"""
Skill Initializer - Creates a new skill from template
Usage:
init_skill.py <skill-name> --path <path>
Examples:
init_skill.py my-new-skill --path skills/public
init_skill.py my-api-helper --path skills/private
init_skill.py custom-skill --path /custom/location
"""
import sys
from pathlib import Path
SKILL_TEMPLATE = """---
name: {skill_name}
description: [TODO: Complete and informative explanation of what the skill does and when to use it. Include WHEN to use this skill - specific scenarios, file types, or tasks that trigger it.]
---
# {skill_title}
## Overview
[TODO: 1-2 sentences explaining what this skill enables]
## Structuring This Skill
[TODO: Choose the structure that best fits this skill's purpose. Common patterns:
**1. Workflow-Based** (best for sequential processes)
- Works well when there are clear step-by-step procedures
- Example: DOCX skill with "Workflow Decision Tree" "Reading" "Creating" "Editing"
- Structure: ## Overview → ## Workflow Decision Tree → ## Step 1 → ## Step 2...
**2. Task-Based** (best for tool collections)
- Works well when the skill offers different operations/capabilities
- Example: PDF skill with "Quick Start" "Merge PDFs" "Split PDFs" "Extract Text"
- Structure: ## Overview → ## Quick Start → ## Task Category 1 → ## Task Category 2...
**3. Reference/Guidelines** (best for standards or specifications)
- Works well for brand guidelines, coding standards, or requirements
- Example: Brand styling with "Brand Guidelines" "Colors" "Typography" "Features"
- Structure: ## Overview → ## Guidelines → ## Specifications → ## Usage...
**4. Capabilities-Based** (best for integrated systems)
- Works well when the skill provides multiple interrelated features
- Example: Product Management with "Core Capabilities" numbered capability list
- Structure: ## Overview → ## Core Capabilities → ### 1. Feature → ### 2. Feature...
Patterns can be mixed and matched as needed. Most skills combine patterns (e.g., start with task-based, add workflow for complex operations).
Delete this entire "Structuring This Skill" section when done - it's just guidance.]
## [TODO: Replace with the first main section based on chosen structure]
[TODO: Add content here. See examples in existing skills:
- Code samples for technical skills
- Decision trees for complex workflows
- Concrete examples with realistic user requests
- References to scripts/templates/references as needed]
## Resources
This skill includes example resource directories that demonstrate how to organize different types of bundled resources:
### scripts/
Executable code (Python/Bash/etc.) that can be run directly to perform specific operations.
**Examples from other skills:**
- PDF skill: `fill_fillable_fields.py`, `extract_form_field_info.py` - utilities for PDF manipulation
- DOCX skill: `document.py`, `utilities.py` - Python modules for document processing
**Appropriate for:** Python scripts, shell scripts, or any executable code that performs automation, data processing, or specific operations.
**Note:** Scripts may be executed without loading into context, but can still be read by Claude for patching or environment adjustments.
### references/
Documentation and reference material intended to be loaded into context to inform Claude's process and thinking.
**Examples from other skills:**
- Product management: `communication.md`, `context_building.md` - detailed workflow guides
- BigQuery: API reference documentation and query examples
- Finance: Schema documentation, company policies
**Appropriate for:** In-depth documentation, API references, database schemas, comprehensive guides, or any detailed information that Claude should reference while working.
### assets/
Files not intended to be loaded into context, but rather used within the output Claude produces.
**Examples from other skills:**
- Brand styling: PowerPoint template files (.pptx), logo files
- Frontend builder: HTML/React boilerplate project directories
- Typography: Font files (.ttf, .woff2)
**Appropriate for:** Templates, boilerplate code, document templates, images, icons, fonts, or any files meant to be copied or used in the final output.
---
**Any unneeded directories can be deleted.** Not every skill requires all three types of resources.
"""
EXAMPLE_SCRIPT = '''#!/usr/bin/env python3
"""
Example helper script for {skill_name}
This is a placeholder script that can be executed directly.
Replace with actual implementation or delete if not needed.
Example real scripts from other skills:
- pdf/scripts/fill_fillable_fields.py - Fills PDF form fields
- pdf/scripts/convert_pdf_to_images.py - Converts PDF pages to images
"""
def main():
print("This is an example script for {skill_name}")
# TODO: Add actual script logic here
# This could be data processing, file conversion, API calls, etc.
if __name__ == "__main__":
main()
'''
EXAMPLE_REFERENCE = """# Reference Documentation for {skill_title}
This is a placeholder for detailed reference documentation.
Replace with actual reference content or delete if not needed.
Example real reference docs from other skills:
- product-management/references/communication.md - Comprehensive guide for status updates
- product-management/references/context_building.md - Deep-dive on gathering context
- bigquery/references/ - API references and query examples
## When Reference Docs Are Useful
Reference docs are ideal for:
- Comprehensive API documentation
- Detailed workflow guides
- Complex multi-step processes
- Information too lengthy for main SKILL.md
- Content that's only needed for specific use cases
## Structure Suggestions
### API Reference Example
- Overview
- Authentication
- Endpoints with examples
- Error codes
- Rate limits
### Workflow Guide Example
- Prerequisites
- Step-by-step instructions
- Common patterns
- Troubleshooting
- Best practices
"""
EXAMPLE_ASSET = """# Example Asset File
This placeholder represents where asset files would be stored.
Replace with actual asset files (templates, images, fonts, etc.) or delete if not needed.
Asset files are NOT intended to be loaded into context, but rather used within
the output Claude produces.
Example asset files from other skills:
- Brand guidelines: logo.png, slides_template.pptx
- Frontend builder: hello-world/ directory with HTML/React boilerplate
- Typography: custom-font.ttf, font-family.woff2
- Data: sample_data.csv, test_dataset.json
## Common Asset Types
- Templates: .pptx, .docx, boilerplate directories
- Images: .png, .jpg, .svg, .gif
- Fonts: .ttf, .otf, .woff, .woff2
- Boilerplate code: Project directories, starter files
- Icons: .ico, .svg
- Data files: .csv, .json, .xml, .yaml
Note: This is a text placeholder. Actual assets can be any file type.
"""
def title_case_skill_name(skill_name):
"""Convert hyphenated skill name to Title Case for display."""
return " ".join(word.capitalize() for word in skill_name.split("-"))
def init_skill(skill_name, path):
"""
Initialize a new skill directory with template SKILL.md.
Args:
skill_name: Name of the skill
path: Path where the skill directory should be created
Returns:
Path to created skill directory, or None if error
"""
# Determine skill directory path
skill_dir = Path(path).resolve() / skill_name
# Check if directory already exists
if skill_dir.exists():
print(f"❌ Error: Skill directory already exists: {skill_dir}")
return None
# Create skill directory
try:
skill_dir.mkdir(parents=True, exist_ok=False)
print(f"✅ Created skill directory: {skill_dir}")
except Exception as e:
print(f"❌ Error creating directory: {e}")
return None
# Create SKILL.md from template
skill_title = title_case_skill_name(skill_name)
skill_content = SKILL_TEMPLATE.format(skill_name=skill_name, skill_title=skill_title)
skill_md_path = skill_dir / "SKILL.md"
try:
skill_md_path.write_text(skill_content)
print("✅ Created SKILL.md")
except Exception as e:
print(f"❌ Error creating SKILL.md: {e}")
return None
# Create resource directories with example files
try:
# Create scripts/ directory with example script
scripts_dir = skill_dir / "scripts"
scripts_dir.mkdir(exist_ok=True)
example_script = scripts_dir / "example.py"
example_script.write_text(EXAMPLE_SCRIPT.format(skill_name=skill_name))
example_script.chmod(0o755)
print("✅ Created scripts/example.py")
# Create references/ directory with example reference doc
references_dir = skill_dir / "references"
references_dir.mkdir(exist_ok=True)
example_reference = references_dir / "api_reference.md"
example_reference.write_text(EXAMPLE_REFERENCE.format(skill_title=skill_title))
print("✅ Created references/api_reference.md")
# Create assets/ directory with example asset placeholder
assets_dir = skill_dir / "assets"
assets_dir.mkdir(exist_ok=True)
example_asset = assets_dir / "example_asset.txt"
example_asset.write_text(EXAMPLE_ASSET)
print("✅ Created assets/example_asset.txt")
except Exception as e:
print(f"❌ Error creating resource directories: {e}")
return None
# Print next steps
print(f"\n✅ Skill '{skill_name}' initialized successfully at {skill_dir}")
print("\nNext steps:")
print("1. Edit SKILL.md to complete the TODO items and update the description")
print("2. Customize or delete the example files in scripts/, references/, and assets/")
print("3. Run the validator when ready to check the skill structure")
return skill_dir
def main():
if len(sys.argv) < 4 or sys.argv[2] != "--path":
print("Usage: init_skill.py <skill-name> --path <path>")
print("\nSkill name requirements:")
print(" - Hyphen-case identifier (e.g., 'data-analyzer')")
print(" - Lowercase letters, digits, and hyphens only")
print(" - Max 40 characters")
print(" - Must match directory name exactly")
print("\nExamples:")
print(" init_skill.py my-new-skill --path skills/public")
print(" init_skill.py my-api-helper --path skills/private")
print(" init_skill.py custom-skill --path /custom/location")
sys.exit(1)
skill_name = sys.argv[1]
path = sys.argv[3]
print(f"🚀 Initializing skill: {skill_name}")
print(f" Location: {path}")
print()
result = init_skill(skill_name, path)
if result:
sys.exit(0)
else:
sys.exit(1)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,110 @@
#!/usr/bin/env python3
"""
Skill Packager - Creates a distributable .skill file of a skill folder
Usage:
python utils/package_skill.py <path/to/skill-folder> [output-directory]
Example:
python utils/package_skill.py skills/public/my-skill
python utils/package_skill.py skills/public/my-skill ./dist
"""
import sys
import zipfile
from pathlib import Path
from quick_validate import validate_skill
def package_skill(skill_path, output_dir=None):
"""
Package a skill folder into a .skill file.
Args:
skill_path: Path to the skill folder
output_dir: Optional output directory for the .skill file (defaults to current directory)
Returns:
Path to the created .skill file, or None if error
"""
skill_path = Path(skill_path).resolve()
# Validate skill folder exists
if not skill_path.exists():
print(f"❌ Error: Skill folder not found: {skill_path}")
return None
if not skill_path.is_dir():
print(f"❌ Error: Path is not a directory: {skill_path}")
return None
# Validate SKILL.md exists
skill_md = skill_path / "SKILL.md"
if not skill_md.exists():
print(f"❌ Error: SKILL.md not found in {skill_path}")
return None
# Run validation before packaging
print("🔍 Validating skill...")
valid, message = validate_skill(skill_path)
if not valid:
print(f"❌ Validation failed: {message}")
print(" Please fix the validation errors before packaging.")
return None
print(f"{message}\n")
# Determine output location
skill_name = skill_path.name
if output_dir:
output_path = Path(output_dir).resolve()
output_path.mkdir(parents=True, exist_ok=True)
else:
output_path = Path.cwd()
skill_filename = output_path / f"{skill_name}.skill"
# Create the .skill file (zip format)
try:
with zipfile.ZipFile(skill_filename, "w", zipfile.ZIP_DEFLATED) as zipf:
# Walk through the skill directory
for file_path in skill_path.rglob("*"):
if file_path.is_file():
# Calculate the relative path within the zip
arcname = file_path.relative_to(skill_path.parent)
zipf.write(file_path, arcname)
print(f" Added: {arcname}")
print(f"\n✅ Successfully packaged skill to: {skill_filename}")
return skill_filename
except Exception as e:
print(f"❌ Error creating .skill file: {e}")
return None
def main():
if len(sys.argv) < 2:
print("Usage: python utils/package_skill.py <path/to/skill-folder> [output-directory]")
print("\nExample:")
print(" python utils/package_skill.py skills/public/my-skill")
print(" python utils/package_skill.py skills/public/my-skill ./dist")
sys.exit(1)
skill_path = sys.argv[1]
output_dir = sys.argv[2] if len(sys.argv) > 2 else None
print(f"📦 Packaging skill: {skill_path}")
if output_dir:
print(f" Output directory: {output_dir}")
print()
result = package_skill(skill_path, output_dir)
if result:
sys.exit(0)
else:
sys.exit(1)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,97 @@
#!/usr/bin/env python3
"""
Quick validation script for skills - minimal version
"""
import sys
import os
import re
import yaml
from pathlib import Path
def validate_skill(skill_path):
"""Basic validation of a skill"""
skill_path = Path(skill_path)
# Check SKILL.md exists
skill_md = skill_path / "SKILL.md"
if not skill_md.exists():
return False, "SKILL.md not found"
# Read and validate frontmatter
content = skill_md.read_text()
if not content.startswith("---"):
return False, "No YAML frontmatter found"
# Extract frontmatter
match = re.match(r"^---\n(.*?)\n---", content, re.DOTALL)
if not match:
return False, "Invalid frontmatter format"
frontmatter_text = match.group(1)
# Parse YAML frontmatter
try:
frontmatter = yaml.safe_load(frontmatter_text)
if not isinstance(frontmatter, dict):
return False, "Frontmatter must be a YAML dictionary"
except yaml.YAMLError as e:
return False, f"Invalid YAML in frontmatter: {e}"
# Define allowed properties
ALLOWED_PROPERTIES = {"name", "description", "license", "allowed-tools", "metadata"}
# Check for unexpected properties (excluding nested keys under metadata)
unexpected_keys = set(frontmatter.keys()) - ALLOWED_PROPERTIES
if unexpected_keys:
return False, (
f"Unexpected key(s) in SKILL.md frontmatter: {', '.join(sorted(unexpected_keys))}. "
f"Allowed properties are: {', '.join(sorted(ALLOWED_PROPERTIES))}"
)
# Check required fields
if "name" not in frontmatter:
return False, "Missing 'name' in frontmatter"
if "description" not in frontmatter:
return False, "Missing 'description' in frontmatter"
# Extract name for validation
name = frontmatter.get("name", "")
if not isinstance(name, str):
return False, f"Name must be a string, got {type(name).__name__}"
name = name.strip()
if name:
# Check naming convention (hyphen-case: lowercase with hyphens)
if not re.match(r"^[a-z0-9-]+$", name):
return False, f"Name '{name}' should be hyphen-case (lowercase letters, digits, and hyphens only)"
if name.startswith("-") or name.endswith("-") or "--" in name:
return False, f"Name '{name}' cannot start/end with hyphen or contain consecutive hyphens"
# Check name length (max 64 characters per spec)
if len(name) > 64:
return False, f"Name is too long ({len(name)} characters). Maximum is 64 characters."
# Extract and validate description
description = frontmatter.get("description", "")
if not isinstance(description, str):
return False, f"Description must be a string, got {type(description).__name__}"
description = description.strip()
if description:
# Check for angle brackets
if "<" in description or ">" in description:
return False, "Description cannot contain angle brackets (< or >)"
# Check description length (max 1024 characters per spec)
if len(description) > 1024:
return False, f"Description is too long ({len(description)} characters). Maximum is 1024 characters."
return True, "Skill is valid!"
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python quick_validate.py <skill_directory>")
sys.exit(1)
valid, message = validate_skill(sys.argv[1])
print(message)
sys.exit(0 if valid else 1)

View File

@ -53,7 +53,6 @@ ignore_imports =
core.workflow.nodes.llm.llm_utils -> extensions.ext_database
core.workflow.nodes.llm.node -> extensions.ext_database
core.workflow.nodes.tool.tool_node -> extensions.ext_database
core.workflow.nodes.variable_assigner.common.impl -> extensions.ext_database
core.workflow.graph_engine.command_channels.redis_channel -> extensions.ext_redis
core.workflow.graph_engine.manager -> extensions.ext_redis
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> extensions.ext_redis

View File

@ -50,16 +50,33 @@ WORKDIR /app/api
# Create non-root user
ARG dify_uid=1001
ARG NODE_MAJOR=22
ARG NODE_PACKAGE_VERSION=22.21.0-1nodesource1
ARG NODESOURCE_KEY_FPR=6F71F525282841EEDAF851B42F59B5F99B1BE0B4
RUN groupadd -r -g ${dify_uid} dify && \
useradd -r -u ${dify_uid} -g ${dify_uid} -s /bin/bash dify && \
chown -R dify:dify /app
RUN \
apt-get update \
&& apt-get install -y --no-install-recommends \
ca-certificates \
curl \
gnupg \
&& mkdir -p /etc/apt/keyrings \
&& curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key -o /tmp/nodesource.gpg \
&& gpg --show-keys --with-colons /tmp/nodesource.gpg \
| awk -F: '/^fpr:/ {print $10}' \
| grep -Fx "${NODESOURCE_KEY_FPR}" \
&& gpg --dearmor -o /etc/apt/keyrings/nodesource.gpg /tmp/nodesource.gpg \
&& rm -f /tmp/nodesource.gpg \
&& echo "deb [signed-by=/etc/apt/keyrings/nodesource.gpg] https://deb.nodesource.com/node_${NODE_MAJOR}.x nodistro main" \
> /etc/apt/sources.list.d/nodesource.list \
&& apt-get update \
# Install dependencies
&& apt-get install -y --no-install-recommends \
# basic environment
curl nodejs \
nodejs=${NODE_PACKAGE_VERSION} \
# for gmpy2 \
libgmp-dev libmpfr-dev libmpc-dev \
# For Security

View File

@ -1,14 +1,16 @@
import re
import uuid
from typing import Literal
from datetime import datetime
from typing import Any, Literal, TypeAlias
from flask import request
from flask_restx import Resource, fields, marshal, marshal_with
from pydantic import BaseModel, Field, field_validator
from flask_restx import Resource
from pydantic import AliasChoices, BaseModel, ConfigDict, Field, computed_field, field_validator
from sqlalchemy import select
from sqlalchemy.orm import Session
from werkzeug.exceptions import BadRequest
from controllers.common.schema import register_schema_models
from controllers.console import console_ns
from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import (
@ -19,27 +21,19 @@ from controllers.console.wraps import (
is_admin_or_owner_required,
setup_required,
)
from core.file import helpers as file_helpers
from core.ops.ops_trace_manager import OpsTraceManager
from core.workflow.enums import NodeType
from extensions.ext_database import db
from fields.app_fields import (
deleted_tool_fields,
model_config_fields,
model_config_partial_fields,
site_fields,
tag_fields,
)
from fields.workflow_fields import workflow_partial_fields as _workflow_partial_fields_dict
from libs.helper import AppIconUrlField, TimestampField
from libs.login import current_account_with_tenant, login_required
from models import App, Workflow
from models.model import IconType
from services.app_dsl_service import AppDslService, ImportMode
from services.app_service import AppService
from services.enterprise.enterprise_service import EnterpriseService
from services.feature_service import FeatureService
ALLOW_CREATE_APP_MODES = ["chat", "agent-chat", "advanced-chat", "workflow", "completion"]
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
class AppListQuery(BaseModel):
@ -192,124 +186,292 @@ class AppTracePayload(BaseModel):
return value
def reg(cls: type[BaseModel]):
console_ns.schema_model(cls.__name__, cls.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
JSONValue: TypeAlias = Any
reg(AppListQuery)
reg(CreateAppPayload)
reg(UpdateAppPayload)
reg(CopyAppPayload)
reg(AppExportQuery)
reg(AppNamePayload)
reg(AppIconPayload)
reg(AppSiteStatusPayload)
reg(AppApiStatusPayload)
reg(AppTracePayload)
class ResponseModel(BaseModel):
model_config = ConfigDict(
from_attributes=True,
extra="ignore",
populate_by_name=True,
serialize_by_alias=True,
protected_namespaces=(),
)
# Register models for flask_restx to avoid dict type issues in Swagger
# Register base models first
tag_model = console_ns.model("Tag", tag_fields)
workflow_partial_model = console_ns.model("WorkflowPartial", _workflow_partial_fields_dict)
def _to_timestamp(value: datetime | int | None) -> int | None:
if isinstance(value, datetime):
return int(value.timestamp())
return value
model_config_model = console_ns.model("ModelConfig", model_config_fields)
model_config_partial_model = console_ns.model("ModelConfigPartial", model_config_partial_fields)
def _build_icon_url(icon_type: str | IconType | None, icon: str | None) -> str | None:
if icon is None or icon_type is None:
return None
icon_type_value = icon_type.value if isinstance(icon_type, IconType) else str(icon_type)
if icon_type_value.lower() != IconType.IMAGE.value:
return None
return file_helpers.get_signed_file_url(icon)
deleted_tool_model = console_ns.model("DeletedTool", deleted_tool_fields)
site_model = console_ns.model("Site", site_fields)
class Tag(ResponseModel):
id: str
name: str
type: str
app_partial_model = console_ns.model(
"AppPartial",
{
"id": fields.String,
"name": fields.String,
"max_active_requests": fields.Raw(),
"description": fields.String(attribute="desc_or_prompt"),
"mode": fields.String(attribute="mode_compatible_with_agent"),
"icon_type": fields.String,
"icon": fields.String,
"icon_background": fields.String,
"icon_url": AppIconUrlField,
"model_config": fields.Nested(model_config_partial_model, attribute="app_model_config", allow_null=True),
"workflow": fields.Nested(workflow_partial_model, allow_null=True),
"use_icon_as_answer_icon": fields.Boolean,
"created_by": fields.String,
"created_at": TimestampField,
"updated_by": fields.String,
"updated_at": TimestampField,
"tags": fields.List(fields.Nested(tag_model)),
"access_mode": fields.String,
"create_user_name": fields.String,
"author_name": fields.String,
"has_draft_trigger": fields.Boolean,
},
)
app_detail_model = console_ns.model(
"AppDetail",
{
"id": fields.String,
"name": fields.String,
"description": fields.String,
"mode": fields.String(attribute="mode_compatible_with_agent"),
"icon": fields.String,
"icon_background": fields.String,
"enable_site": fields.Boolean,
"enable_api": fields.Boolean,
"model_config": fields.Nested(model_config_model, attribute="app_model_config", allow_null=True),
"workflow": fields.Nested(workflow_partial_model, allow_null=True),
"tracing": fields.Raw,
"use_icon_as_answer_icon": fields.Boolean,
"created_by": fields.String,
"created_at": TimestampField,
"updated_by": fields.String,
"updated_at": TimestampField,
"access_mode": fields.String,
"tags": fields.List(fields.Nested(tag_model)),
},
)
class WorkflowPartial(ResponseModel):
id: str
created_by: str | None = None
created_at: int | None = None
updated_by: str | None = None
updated_at: int | None = None
app_detail_with_site_model = console_ns.model(
"AppDetailWithSite",
{
"id": fields.String,
"name": fields.String,
"description": fields.String,
"mode": fields.String(attribute="mode_compatible_with_agent"),
"icon_type": fields.String,
"icon": fields.String,
"icon_background": fields.String,
"icon_url": AppIconUrlField,
"enable_site": fields.Boolean,
"enable_api": fields.Boolean,
"model_config": fields.Nested(model_config_model, attribute="app_model_config", allow_null=True),
"workflow": fields.Nested(workflow_partial_model, allow_null=True),
"api_base_url": fields.String,
"use_icon_as_answer_icon": fields.Boolean,
"max_active_requests": fields.Integer,
"created_by": fields.String,
"created_at": TimestampField,
"updated_by": fields.String,
"updated_at": TimestampField,
"deleted_tools": fields.List(fields.Nested(deleted_tool_model)),
"access_mode": fields.String,
"tags": fields.List(fields.Nested(tag_model)),
"site": fields.Nested(site_model),
},
)
@field_validator("created_at", "updated_at", mode="before")
@classmethod
def _normalize_timestamp(cls, value: datetime | int | None) -> int | None:
return _to_timestamp(value)
app_pagination_model = console_ns.model(
"AppPagination",
{
"page": fields.Integer,
"limit": fields.Integer(attribute="per_page"),
"total": fields.Integer,
"has_more": fields.Boolean(attribute="has_next"),
"data": fields.List(fields.Nested(app_partial_model), attribute="items"),
},
class ModelConfigPartial(ResponseModel):
model: JSONValue | None = Field(default=None, validation_alias=AliasChoices("model_dict", "model"))
pre_prompt: str | None = None
created_by: str | None = None
created_at: int | None = None
updated_by: str | None = None
updated_at: int | None = None
@field_validator("created_at", "updated_at", mode="before")
@classmethod
def _normalize_timestamp(cls, value: datetime | int | None) -> int | None:
return _to_timestamp(value)
class ModelConfig(ResponseModel):
opening_statement: str | None = None
suggested_questions: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("suggested_questions_list", "suggested_questions")
)
suggested_questions_after_answer: JSONValue | None = Field(
default=None,
validation_alias=AliasChoices("suggested_questions_after_answer_dict", "suggested_questions_after_answer"),
)
speech_to_text: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("speech_to_text_dict", "speech_to_text")
)
text_to_speech: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("text_to_speech_dict", "text_to_speech")
)
retriever_resource: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("retriever_resource_dict", "retriever_resource")
)
annotation_reply: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("annotation_reply_dict", "annotation_reply")
)
more_like_this: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("more_like_this_dict", "more_like_this")
)
sensitive_word_avoidance: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("sensitive_word_avoidance_dict", "sensitive_word_avoidance")
)
external_data_tools: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("external_data_tools_list", "external_data_tools")
)
model: JSONValue | None = Field(default=None, validation_alias=AliasChoices("model_dict", "model"))
user_input_form: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("user_input_form_list", "user_input_form")
)
dataset_query_variable: str | None = None
pre_prompt: str | None = None
agent_mode: JSONValue | None = Field(default=None, validation_alias=AliasChoices("agent_mode_dict", "agent_mode"))
prompt_type: str | None = None
chat_prompt_config: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("chat_prompt_config_dict", "chat_prompt_config")
)
completion_prompt_config: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("completion_prompt_config_dict", "completion_prompt_config")
)
dataset_configs: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("dataset_configs_dict", "dataset_configs")
)
file_upload: JSONValue | None = Field(
default=None, validation_alias=AliasChoices("file_upload_dict", "file_upload")
)
created_by: str | None = None
created_at: int | None = None
updated_by: str | None = None
updated_at: int | None = None
@field_validator("created_at", "updated_at", mode="before")
@classmethod
def _normalize_timestamp(cls, value: datetime | int | None) -> int | None:
return _to_timestamp(value)
class Site(ResponseModel):
access_token: str | None = Field(default=None, validation_alias="code")
code: str | None = None
title: str | None = None
icon_type: str | IconType | None = None
icon: str | None = None
icon_background: str | None = None
description: str | None = None
default_language: str | None = None
chat_color_theme: str | None = None
chat_color_theme_inverted: bool | None = None
customize_domain: str | None = None
copyright: str | None = None
privacy_policy: str | None = None
custom_disclaimer: str | None = None
customize_token_strategy: str | None = None
prompt_public: bool | None = None
app_base_url: str | None = None
show_workflow_steps: bool | None = None
use_icon_as_answer_icon: bool | None = None
created_by: str | None = None
created_at: int | None = None
updated_by: str | None = None
updated_at: int | None = None
@computed_field(return_type=str | None) # type: ignore
@property
def icon_url(self) -> str | None:
return _build_icon_url(self.icon_type, self.icon)
@field_validator("icon_type", mode="before")
@classmethod
def _normalize_icon_type(cls, value: str | IconType | None) -> str | None:
if isinstance(value, IconType):
return value.value
return value
@field_validator("created_at", "updated_at", mode="before")
@classmethod
def _normalize_timestamp(cls, value: datetime | int | None) -> int | None:
return _to_timestamp(value)
class DeletedTool(ResponseModel):
type: str
tool_name: str
provider_id: str
class AppPartial(ResponseModel):
id: str
name: str
max_active_requests: int | None = None
description: str | None = Field(default=None, validation_alias=AliasChoices("desc_or_prompt", "description"))
mode: str = Field(validation_alias="mode_compatible_with_agent")
icon_type: str | None = None
icon: str | None = None
icon_background: str | None = None
model_config_: ModelConfigPartial | None = Field(
default=None,
validation_alias=AliasChoices("app_model_config", "model_config"),
alias="model_config",
)
workflow: WorkflowPartial | None = None
use_icon_as_answer_icon: bool | None = None
created_by: str | None = None
created_at: int | None = None
updated_by: str | None = None
updated_at: int | None = None
tags: list[Tag] = Field(default_factory=list)
access_mode: str | None = None
create_user_name: str | None = None
author_name: str | None = None
has_draft_trigger: bool | None = None
@computed_field(return_type=str | None) # type: ignore
@property
def icon_url(self) -> str | None:
return _build_icon_url(self.icon_type, self.icon)
@field_validator("created_at", "updated_at", mode="before")
@classmethod
def _normalize_timestamp(cls, value: datetime | int | None) -> int | None:
return _to_timestamp(value)
class AppDetail(ResponseModel):
id: str
name: str
description: str | None = None
mode: str = Field(validation_alias="mode_compatible_with_agent")
icon: str | None = None
icon_background: str | None = None
enable_site: bool
enable_api: bool
model_config_: ModelConfig | None = Field(
default=None,
validation_alias=AliasChoices("app_model_config", "model_config"),
alias="model_config",
)
workflow: WorkflowPartial | None = None
tracing: JSONValue | None = None
use_icon_as_answer_icon: bool | None = None
created_by: str | None = None
created_at: int | None = None
updated_by: str | None = None
updated_at: int | None = None
access_mode: str | None = None
tags: list[Tag] = Field(default_factory=list)
@field_validator("created_at", "updated_at", mode="before")
@classmethod
def _normalize_timestamp(cls, value: datetime | int | None) -> int | None:
return _to_timestamp(value)
class AppDetailWithSite(AppDetail):
icon_type: str | None = None
api_base_url: str | None = None
max_active_requests: int | None = None
deleted_tools: list[DeletedTool] = Field(default_factory=list)
site: Site | None = None
@computed_field(return_type=str | None) # type: ignore
@property
def icon_url(self) -> str | None:
return _build_icon_url(self.icon_type, self.icon)
class AppPagination(ResponseModel):
page: int
limit: int = Field(validation_alias=AliasChoices("per_page", "limit"))
total: int
has_more: bool = Field(validation_alias=AliasChoices("has_next", "has_more"))
data: list[AppPartial] = Field(validation_alias=AliasChoices("items", "data"))
class AppExportResponse(ResponseModel):
data: str
register_schema_models(
console_ns,
AppListQuery,
CreateAppPayload,
UpdateAppPayload,
CopyAppPayload,
AppExportQuery,
AppNamePayload,
AppIconPayload,
AppSiteStatusPayload,
AppApiStatusPayload,
AppTracePayload,
Tag,
WorkflowPartial,
ModelConfigPartial,
ModelConfig,
Site,
DeletedTool,
AppPartial,
AppDetail,
AppDetailWithSite,
AppPagination,
AppExportResponse,
)
@ -318,7 +480,7 @@ class AppListApi(Resource):
@console_ns.doc("list_apps")
@console_ns.doc(description="Get list of applications with pagination and filtering")
@console_ns.expect(console_ns.models[AppListQuery.__name__])
@console_ns.response(200, "Success", app_pagination_model)
@console_ns.response(200, "Success", console_ns.models[AppPagination.__name__])
@setup_required
@login_required
@account_initialization_required
@ -334,7 +496,8 @@ class AppListApi(Resource):
app_service = AppService()
app_pagination = app_service.get_paginate_apps(current_user.id, current_tenant_id, args_dict)
if not app_pagination:
return {"data": [], "total": 0, "page": 1, "limit": 20, "has_more": False}
empty = AppPagination(page=args.page, limit=args.limit, total=0, has_more=False, data=[])
return empty.model_dump(mode="json"), 200
if FeatureService.get_system_features().webapp_auth.enabled:
app_ids = [str(app.id) for app in app_pagination.items]
@ -378,18 +541,18 @@ class AppListApi(Resource):
for app in app_pagination.items:
app.has_draft_trigger = str(app.id) in draft_trigger_app_ids
return marshal(app_pagination, app_pagination_model), 200
pagination_model = AppPagination.model_validate(app_pagination, from_attributes=True)
return pagination_model.model_dump(mode="json"), 200
@console_ns.doc("create_app")
@console_ns.doc(description="Create a new application")
@console_ns.expect(console_ns.models[CreateAppPayload.__name__])
@console_ns.response(201, "App created successfully", app_detail_model)
@console_ns.response(201, "App created successfully", console_ns.models[AppDetail.__name__])
@console_ns.response(403, "Insufficient permissions")
@console_ns.response(400, "Invalid request parameters")
@setup_required
@login_required
@account_initialization_required
@marshal_with(app_detail_model)
@cloud_edition_billing_resource_check("apps")
@edit_permission_required
def post(self):
@ -399,8 +562,8 @@ class AppListApi(Resource):
app_service = AppService()
app = app_service.create_app(current_tenant_id, args.model_dump(), current_user)
return app, 201
app_detail = AppDetail.model_validate(app, from_attributes=True)
return app_detail.model_dump(mode="json"), 201
@console_ns.route("/apps/<uuid:app_id>")
@ -408,13 +571,12 @@ class AppApi(Resource):
@console_ns.doc("get_app_detail")
@console_ns.doc(description="Get application details")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.response(200, "Success", app_detail_with_site_model)
@console_ns.response(200, "Success", console_ns.models[AppDetailWithSite.__name__])
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
@get_app_model
@marshal_with(app_detail_with_site_model)
@get_app_model(mode=None)
def get(self, app_model):
"""Get app detail"""
app_service = AppService()
@ -425,21 +587,21 @@ class AppApi(Resource):
app_setting = EnterpriseService.WebAppAuth.get_app_access_mode_by_id(app_id=str(app_model.id))
app_model.access_mode = app_setting.access_mode
return app_model
response_model = AppDetailWithSite.model_validate(app_model, from_attributes=True)
return response_model.model_dump(mode="json")
@console_ns.doc("update_app")
@console_ns.doc(description="Update application details")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.expect(console_ns.models[UpdateAppPayload.__name__])
@console_ns.response(200, "App updated successfully", app_detail_with_site_model)
@console_ns.response(200, "App updated successfully", console_ns.models[AppDetailWithSite.__name__])
@console_ns.response(403, "Insufficient permissions")
@console_ns.response(400, "Invalid request parameters")
@setup_required
@login_required
@account_initialization_required
@get_app_model
@get_app_model(mode=None)
@edit_permission_required
@marshal_with(app_detail_with_site_model)
def put(self, app_model):
"""Update app"""
args = UpdateAppPayload.model_validate(console_ns.payload)
@ -456,8 +618,8 @@ class AppApi(Resource):
"max_active_requests": args.max_active_requests or 0,
}
app_model = app_service.update_app(app_model, args_dict)
return app_model
response_model = AppDetailWithSite.model_validate(app_model, from_attributes=True)
return response_model.model_dump(mode="json")
@console_ns.doc("delete_app")
@console_ns.doc(description="Delete application")
@ -483,14 +645,13 @@ class AppCopyApi(Resource):
@console_ns.doc(description="Create a copy of an existing application")
@console_ns.doc(params={"app_id": "Application ID to copy"})
@console_ns.expect(console_ns.models[CopyAppPayload.__name__])
@console_ns.response(201, "App copied successfully", app_detail_with_site_model)
@console_ns.response(201, "App copied successfully", console_ns.models[AppDetailWithSite.__name__])
@console_ns.response(403, "Insufficient permissions")
@setup_required
@login_required
@account_initialization_required
@get_app_model
@get_app_model(mode=None)
@edit_permission_required
@marshal_with(app_detail_with_site_model)
def post(self, app_model):
"""Copy app"""
# The role of the current user in the ta table must be admin, owner, or editor
@ -516,7 +677,8 @@ class AppCopyApi(Resource):
stmt = select(App).where(App.id == result.app_id)
app = session.scalar(stmt)
return app, 201
response_model = AppDetailWithSite.model_validate(app, from_attributes=True)
return response_model.model_dump(mode="json"), 201
@console_ns.route("/apps/<uuid:app_id>/export")
@ -525,11 +687,7 @@ class AppExportApi(Resource):
@console_ns.doc(description="Export application configuration as DSL")
@console_ns.doc(params={"app_id": "Application ID to export"})
@console_ns.expect(console_ns.models[AppExportQuery.__name__])
@console_ns.response(
200,
"App exported successfully",
console_ns.model("AppExportResponse", {"data": fields.String(description="DSL export data")}),
)
@console_ns.response(200, "App exported successfully", console_ns.models[AppExportResponse.__name__])
@console_ns.response(403, "Insufficient permissions")
@get_app_model
@setup_required
@ -540,13 +698,14 @@ class AppExportApi(Resource):
"""Export app"""
args = AppExportQuery.model_validate(request.args.to_dict(flat=True)) # type: ignore
return {
"data": AppDslService.export_dsl(
payload = AppExportResponse(
data=AppDslService.export_dsl(
app_model=app_model,
include_secret=args.include_secret,
workflow_id=args.workflow_id,
)
}
)
return payload.model_dump(mode="json")
@console_ns.route("/apps/<uuid:app_id>/name")
@ -555,20 +714,19 @@ class AppNameApi(Resource):
@console_ns.doc(description="Check if app name is available")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.expect(console_ns.models[AppNamePayload.__name__])
@console_ns.response(200, "Name availability checked")
@console_ns.response(200, "Name availability checked", console_ns.models[AppDetail.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_model)
@get_app_model(mode=None)
@edit_permission_required
def post(self, app_model):
args = AppNamePayload.model_validate(console_ns.payload)
app_service = AppService()
app_model = app_service.update_app_name(app_model, args.name)
return app_model
response_model = AppDetail.model_validate(app_model, from_attributes=True)
return response_model.model_dump(mode="json")
@console_ns.route("/apps/<uuid:app_id>/icon")
@ -582,16 +740,15 @@ class AppIconApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_model)
@get_app_model(mode=None)
@edit_permission_required
def post(self, app_model):
args = AppIconPayload.model_validate(console_ns.payload or {})
app_service = AppService()
app_model = app_service.update_app_icon(app_model, args.icon or "", args.icon_background or "")
return app_model
response_model = AppDetail.model_validate(app_model, from_attributes=True)
return response_model.model_dump(mode="json")
@console_ns.route("/apps/<uuid:app_id>/site-enable")
@ -600,21 +757,20 @@ class AppSiteStatus(Resource):
@console_ns.doc(description="Enable or disable app site")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.expect(console_ns.models[AppSiteStatusPayload.__name__])
@console_ns.response(200, "Site status updated successfully", app_detail_model)
@console_ns.response(200, "Site status updated successfully", console_ns.models[AppDetail.__name__])
@console_ns.response(403, "Insufficient permissions")
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_model)
@get_app_model(mode=None)
@edit_permission_required
def post(self, app_model):
args = AppSiteStatusPayload.model_validate(console_ns.payload)
app_service = AppService()
app_model = app_service.update_app_site_status(app_model, args.enable_site)
return app_model
response_model = AppDetail.model_validate(app_model, from_attributes=True)
return response_model.model_dump(mode="json")
@console_ns.route("/apps/<uuid:app_id>/api-enable")
@ -623,21 +779,20 @@ class AppApiStatus(Resource):
@console_ns.doc(description="Enable or disable app API")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.expect(console_ns.models[AppApiStatusPayload.__name__])
@console_ns.response(200, "API status updated successfully", app_detail_model)
@console_ns.response(200, "API status updated successfully", console_ns.models[AppDetail.__name__])
@console_ns.response(403, "Insufficient permissions")
@setup_required
@login_required
@is_admin_or_owner_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_model)
@get_app_model(mode=None)
def post(self, app_model):
args = AppApiStatusPayload.model_validate(console_ns.payload)
app_service = AppService()
app_model = app_service.update_app_api_status(app_model, args.enable_api)
return app_model
response_model = AppDetail.model_validate(app_model, from_attributes=True)
return response_model.model_dump(mode="json")
@console_ns.route("/apps/<uuid:app_id>/trace")

View File

@ -348,10 +348,13 @@ class CompletionConversationApi(Resource):
)
if args.keyword:
from libs.helper import escape_like_pattern
escaped_keyword = escape_like_pattern(args.keyword)
query = query.join(Message, Message.conversation_id == Conversation.id).where(
or_(
Message.query.ilike(f"%{args.keyword}%"),
Message.answer.ilike(f"%{args.keyword}%"),
Message.query.ilike(f"%{escaped_keyword}%", escape="\\"),
Message.answer.ilike(f"%{escaped_keyword}%", escape="\\"),
)
)
@ -460,7 +463,10 @@ class ChatConversationApi(Resource):
query = sa.select(Conversation).where(Conversation.app_id == app_model.id, Conversation.is_deleted.is_(False))
if args.keyword:
keyword_filter = f"%{args.keyword}%"
from libs.helper import escape_like_pattern
escaped_keyword = escape_like_pattern(args.keyword)
keyword_filter = f"%{escaped_keyword}%"
query = (
query.join(
Message,
@ -469,11 +475,11 @@ class ChatConversationApi(Resource):
.join(subquery, subquery.c.conversation_id == Conversation.id)
.where(
or_(
Message.query.ilike(keyword_filter),
Message.answer.ilike(keyword_filter),
Conversation.name.ilike(keyword_filter),
Conversation.introduction.ilike(keyword_filter),
subquery.c.from_end_user_session_id.ilike(keyword_filter),
Message.query.ilike(keyword_filter, escape="\\"),
Message.answer.ilike(keyword_filter, escape="\\"),
Conversation.name.ilike(keyword_filter, escape="\\"),
Conversation.introduction.ilike(keyword_filter, escape="\\"),
subquery.c.from_end_user_session_id.ilike(keyword_filter, escape="\\"),
),
)
.group_by(Conversation.id)

View File

@ -202,6 +202,7 @@ message_detail_model = console_ns.model(
"status": fields.String,
"error": fields.String,
"parent_message_id": fields.String,
"generation_detail": fields.Raw,
},
)

View File

@ -1,3 +1,5 @@
from typing import Any
import flask_login
from flask import make_response, request
from flask_restx import Resource
@ -96,14 +98,13 @@ class LoginApi(Resource):
if is_login_error_rate_limit:
raise EmailPasswordLoginLimitError()
# TODO: why invitation is re-assigned with different type?
invitation = args.invite_token # type: ignore
if invitation:
invitation = RegisterService.get_invitation_if_token_valid(None, args.email, invitation) # type: ignore
invitation_data: dict[str, Any] | None = None
if args.invite_token:
invitation_data = RegisterService.get_invitation_if_token_valid(None, args.email, args.invite_token)
try:
if invitation:
data = invitation.get("data", {}) # type: ignore
if invitation_data:
data = invitation_data.get("data", {})
invitee_email = data.get("email") if data else None
if invitee_email != args.email:
raise InvalidEmailError()

View File

@ -30,6 +30,7 @@ from core.model_runtime.entities.model_entities import ModelType
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from fields.segment_fields import child_chunk_fields, segment_fields
from libs.helper import escape_like_pattern
from libs.login import current_account_with_tenant, login_required
from models.dataset import ChildChunk, DocumentSegment
from models.model import UploadFile
@ -145,6 +146,8 @@ class DatasetDocumentSegmentListApi(Resource):
query = query.where(DocumentSegment.hit_count >= hit_count_gte)
if keyword:
# Escape special characters in keyword to prevent SQL injection via LIKE wildcards
escaped_keyword = escape_like_pattern(keyword)
# Search in both content and keywords fields
# Use database-specific methods for JSON array search
if dify_config.SQLALCHEMY_DATABASE_URI_SCHEME == "postgresql":
@ -156,15 +159,15 @@ class DatasetDocumentSegmentListApi(Resource):
.scalar_subquery()
),
",",
).ilike(f"%{keyword}%")
).ilike(f"%{escaped_keyword}%", escape="\\")
else:
# MySQL: Cast JSON to string for pattern matching
# MySQL stores Chinese text directly in JSON without Unicode escaping
keywords_condition = cast(DocumentSegment.keywords, String).ilike(f"%{keyword}%")
keywords_condition = cast(DocumentSegment.keywords, String).ilike(f"%{escaped_keyword}%", escape="\\")
query = query.where(
or_(
DocumentSegment.content.ilike(f"%{keyword}%"),
DocumentSegment.content.ilike(f"%{escaped_keyword}%", escape="\\"),
keywords_condition,
)
)

View File

@ -1,7 +1,7 @@
import logging
from typing import Any
from flask_restx import marshal, reqparse
from flask_restx import marshal
from pydantic import BaseModel, Field
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
@ -56,15 +56,10 @@ class DatasetsHitTestingBase:
HitTestingService.hit_testing_args_check(args)
@staticmethod
def parse_args():
parser = (
reqparse.RequestParser()
.add_argument("query", type=str, required=False, location="json")
.add_argument("attachment_ids", type=list, required=False, location="json")
.add_argument("retrieval_model", type=dict, required=False, location="json")
.add_argument("external_retrieval_model", type=dict, required=False, location="json")
)
return parser.parse_args()
def parse_args(payload: dict[str, Any]) -> dict[str, Any]:
"""Validate and return hit-testing arguments from an incoming payload."""
hit_testing_payload = HitTestingPayload.model_validate(payload or {})
return hit_testing_payload.model_dump(exclude_none=True)
@staticmethod
def perform_hit_testing(dataset, args):

View File

@ -355,7 +355,7 @@ class PublishedRagPipelineRunApi(Resource):
pipeline=pipeline,
user=current_user,
args=args,
invoke_from=InvokeFrom.DEBUGGER if payload.is_preview else InvokeFrom.PUBLISHED,
invoke_from=InvokeFrom.DEBUGGER if payload.is_preview else InvokeFrom.PUBLISHED_PIPELINE,
streaming=streaming,
)

View File

@ -1,7 +1,7 @@
from typing import Literal
from flask import request
from flask_restx import Resource, marshal_with
from flask_restx import Resource
from werkzeug.exceptions import Forbidden
import services
@ -15,18 +15,21 @@ from controllers.common.errors import (
TooManyFilesError,
UnsupportedFileTypeError,
)
from controllers.common.schema import register_schema_models
from controllers.console.wraps import (
account_initialization_required,
cloud_edition_billing_resource_check,
setup_required,
)
from extensions.ext_database import db
from fields.file_fields import file_fields, upload_config_fields
from fields.file_fields import FileResponse, UploadConfig
from libs.login import current_account_with_tenant, login_required
from services.file_service import FileService
from . import console_ns
register_schema_models(console_ns, UploadConfig, FileResponse)
PREVIEW_WORDS_LIMIT = 3000
@ -35,26 +38,27 @@ class FileApi(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(upload_config_fields)
@console_ns.response(200, "Success", console_ns.models[UploadConfig.__name__])
def get(self):
return {
"file_size_limit": dify_config.UPLOAD_FILE_SIZE_LIMIT,
"batch_count_limit": dify_config.UPLOAD_FILE_BATCH_LIMIT,
"file_upload_limit": dify_config.BATCH_UPLOAD_LIMIT,
"image_file_size_limit": dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT,
"video_file_size_limit": dify_config.UPLOAD_VIDEO_FILE_SIZE_LIMIT,
"audio_file_size_limit": dify_config.UPLOAD_AUDIO_FILE_SIZE_LIMIT,
"workflow_file_upload_limit": dify_config.WORKFLOW_FILE_UPLOAD_LIMIT,
"image_file_batch_limit": dify_config.IMAGE_FILE_BATCH_LIMIT,
"single_chunk_attachment_limit": dify_config.SINGLE_CHUNK_ATTACHMENT_LIMIT,
"attachment_image_file_size_limit": dify_config.ATTACHMENT_IMAGE_FILE_SIZE_LIMIT,
}, 200
config = UploadConfig(
file_size_limit=dify_config.UPLOAD_FILE_SIZE_LIMIT,
batch_count_limit=dify_config.UPLOAD_FILE_BATCH_LIMIT,
file_upload_limit=dify_config.BATCH_UPLOAD_LIMIT,
image_file_size_limit=dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT,
video_file_size_limit=dify_config.UPLOAD_VIDEO_FILE_SIZE_LIMIT,
audio_file_size_limit=dify_config.UPLOAD_AUDIO_FILE_SIZE_LIMIT,
workflow_file_upload_limit=dify_config.WORKFLOW_FILE_UPLOAD_LIMIT,
image_file_batch_limit=dify_config.IMAGE_FILE_BATCH_LIMIT,
single_chunk_attachment_limit=dify_config.SINGLE_CHUNK_ATTACHMENT_LIMIT,
attachment_image_file_size_limit=dify_config.ATTACHMENT_IMAGE_FILE_SIZE_LIMIT,
)
return config.model_dump(mode="json"), 200
@setup_required
@login_required
@account_initialization_required
@marshal_with(file_fields)
@cloud_edition_billing_resource_check("documents")
@console_ns.response(201, "File uploaded successfully", console_ns.models[FileResponse.__name__])
def post(self):
current_user, _ = current_account_with_tenant()
source_str = request.form.get("source")
@ -90,7 +94,8 @@ class FileApi(Resource):
except services.errors.file.BlockedFileExtensionError as blocked_extension_error:
raise BlockedFileExtensionError(blocked_extension_error.description)
return upload_file, 201
response = FileResponse.model_validate(upload_file, from_attributes=True)
return response.model_dump(mode="json"), 201
@console_ns.route("/files/<uuid:file_id>/preview")

View File

@ -1,7 +1,7 @@
import urllib.parse
import httpx
from flask_restx import Resource, marshal_with
from flask_restx import Resource
from pydantic import BaseModel, Field
import services
@ -11,19 +11,22 @@ from controllers.common.errors import (
RemoteFileUploadError,
UnsupportedFileTypeError,
)
from controllers.common.schema import register_schema_models
from core.file import helpers as file_helpers
from core.helper import ssrf_proxy
from extensions.ext_database import db
from fields.file_fields import file_fields_with_signed_url, remote_file_info_fields
from fields.file_fields import FileWithSignedUrl, RemoteFileInfo
from libs.login import current_account_with_tenant
from services.file_service import FileService
from . import console_ns
register_schema_models(console_ns, RemoteFileInfo, FileWithSignedUrl)
@console_ns.route("/remote-files/<path:url>")
class RemoteFileInfoApi(Resource):
@marshal_with(remote_file_info_fields)
@console_ns.response(200, "Remote file info", console_ns.models[RemoteFileInfo.__name__])
def get(self, url):
decoded_url = urllib.parse.unquote(url)
resp = ssrf_proxy.head(decoded_url)
@ -31,10 +34,11 @@ class RemoteFileInfoApi(Resource):
# failed back to get method
resp = ssrf_proxy.get(decoded_url, timeout=3)
resp.raise_for_status()
return {
"file_type": resp.headers.get("Content-Type", "application/octet-stream"),
"file_length": int(resp.headers.get("Content-Length", 0)),
}
info = RemoteFileInfo(
file_type=resp.headers.get("Content-Type", "application/octet-stream"),
file_length=int(resp.headers.get("Content-Length", 0)),
)
return info.model_dump(mode="json")
class RemoteFileUploadPayload(BaseModel):
@ -50,7 +54,7 @@ console_ns.schema_model(
@console_ns.route("/remote-files/upload")
class RemoteFileUploadApi(Resource):
@console_ns.expect(console_ns.models[RemoteFileUploadPayload.__name__])
@marshal_with(file_fields_with_signed_url)
@console_ns.response(201, "Remote file uploaded", console_ns.models[FileWithSignedUrl.__name__])
def post(self):
args = RemoteFileUploadPayload.model_validate(console_ns.payload)
url = args.url
@ -85,13 +89,14 @@ class RemoteFileUploadApi(Resource):
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
return {
"id": upload_file.id,
"name": upload_file.name,
"size": upload_file.size,
"extension": upload_file.extension,
"url": file_helpers.get_signed_file_url(upload_file_id=upload_file.id),
"mime_type": upload_file.mime_type,
"created_by": upload_file.created_by,
"created_at": upload_file.created_at,
}, 201
payload = FileWithSignedUrl(
id=upload_file.id,
name=upload_file.name,
size=upload_file.size,
extension=upload_file.extension,
url=file_helpers.get_signed_file_url(upload_file_id=upload_file.id),
mime_type=upload_file.mime_type,
created_by=upload_file.created_by,
created_at=int(upload_file.created_at.timestamp()),
)
return payload.model_dump(mode="json"), 201

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from datetime import datetime
from typing import Literal
@ -99,7 +101,7 @@ class AccountPasswordPayload(BaseModel):
repeat_new_password: str
@model_validator(mode="after")
def check_passwords_match(self) -> "AccountPasswordPayload":
def check_passwords_match(self) -> AccountPasswordPayload:
if self.new_password != self.repeat_new_password:
raise RepeatPasswordNotMatchError()
return self

View File

@ -4,18 +4,18 @@ from flask import request
from flask_restx import Resource
from flask_restx.api import HTTPStatus
from pydantic import BaseModel, Field
from werkzeug.datastructures import FileStorage
from werkzeug.exceptions import Forbidden
import services
from core.file.helpers import verify_plugin_file_signature
from core.tools.tool_file_manager import ToolFileManager
from fields.file_fields import build_file_model
from fields.file_fields import FileResponse
from ..common.errors import (
FileTooLargeError,
UnsupportedFileTypeError,
)
from ..common.schema import register_schema_models
from ..console.wraps import setup_required
from ..files import files_ns
from ..inner_api.plugin.wraps import get_user
@ -35,6 +35,8 @@ files_ns.schema_model(
PluginUploadQuery.__name__, PluginUploadQuery.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0)
)
register_schema_models(files_ns, FileResponse)
@files_ns.route("/upload/for-plugin")
class PluginUploadFileApi(Resource):
@ -51,7 +53,7 @@ class PluginUploadFileApi(Resource):
415: "Unsupported file type",
}
)
@files_ns.marshal_with(build_file_model(files_ns), code=HTTPStatus.CREATED)
@files_ns.response(HTTPStatus.CREATED, "File uploaded", files_ns.models[FileResponse.__name__])
def post(self):
"""Upload a file for plugin usage.
@ -69,7 +71,7 @@ class PluginUploadFileApi(Resource):
"""
args = PluginUploadQuery.model_validate(request.args.to_dict(flat=True)) # type: ignore
file: FileStorage | None = request.files.get("file")
file = request.files.get("file")
if file is None:
raise Forbidden("File is required.")
@ -80,8 +82,8 @@ class PluginUploadFileApi(Resource):
user_id = args.user_id
user = get_user(tenant_id, user_id)
filename: str | None = file.filename
mimetype: str | None = file.mimetype
filename = file.filename
mimetype = file.mimetype
if not filename or not mimetype:
raise Forbidden("Invalid request.")
@ -111,22 +113,22 @@ class PluginUploadFileApi(Resource):
preview_url = ToolFileManager.sign_file(tool_file_id=tool_file.id, extension=extension)
# Create a dictionary with all the necessary attributes
result = {
"id": tool_file.id,
"user_id": tool_file.user_id,
"tenant_id": tool_file.tenant_id,
"conversation_id": tool_file.conversation_id,
"file_key": tool_file.file_key,
"mimetype": tool_file.mimetype,
"original_url": tool_file.original_url,
"name": tool_file.name,
"size": tool_file.size,
"mime_type": mimetype,
"extension": extension,
"preview_url": preview_url,
}
result = FileResponse(
id=tool_file.id,
name=tool_file.name,
size=tool_file.size,
extension=extension,
mime_type=mimetype,
preview_url=preview_url,
source_url=tool_file.original_url,
original_url=tool_file.original_url,
user_id=tool_file.user_id,
tenant_id=tool_file.tenant_id,
conversation_id=tool_file.conversation_id,
file_key=tool_file.file_key,
)
return result, 201
return result.model_dump(mode="json"), 201
except services.errors.file.FileTooLargeError as file_too_large_error:
raise FileTooLargeError(file_too_large_error.description)
except services.errors.file.UnsupportedFileTypeError:

View File

@ -10,13 +10,16 @@ from controllers.common.errors import (
TooManyFilesError,
UnsupportedFileTypeError,
)
from controllers.common.schema import register_schema_models
from controllers.service_api import service_api_ns
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from extensions.ext_database import db
from fields.file_fields import build_file_model
from fields.file_fields import FileResponse
from models import App, EndUser
from services.file_service import FileService
register_schema_models(service_api_ns, FileResponse)
@service_api_ns.route("/files/upload")
class FileApi(Resource):
@ -31,8 +34,8 @@ class FileApi(Resource):
415: "Unsupported file type",
}
)
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.FORM))
@service_api_ns.marshal_with(build_file_model(service_api_ns), code=HTTPStatus.CREATED)
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.FORM)) # type: ignore
@service_api_ns.response(HTTPStatus.CREATED, "File uploaded", service_api_ns.models[FileResponse.__name__])
def post(self, app_model: App, end_user: EndUser):
"""Upload a file for use in conversations.
@ -64,4 +67,5 @@ class FileApi(Resource):
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
return upload_file, 201
response = FileResponse.model_validate(upload_file, from_attributes=True)
return response.model_dump(mode="json"), 201

View File

@ -24,7 +24,7 @@ class HitTestingApi(DatasetApiResource, DatasetsHitTestingBase):
dataset_id_str = str(dataset_id)
dataset = self.get_and_validate_dataset(dataset_id_str)
args = self.parse_args()
args = self.parse_args(service_api_ns.payload)
self.hit_testing_args_check(args)
return self.perform_hit_testing(dataset, args)

View File

@ -174,7 +174,7 @@ class PipelineRunApi(DatasetApiResource):
pipeline=pipeline,
user=current_user,
args=payload.model_dump(),
invoke_from=InvokeFrom.PUBLISHED if payload.is_published else InvokeFrom.DEBUGGER,
invoke_from=InvokeFrom.PUBLISHED_PIPELINE if payload.is_published else InvokeFrom.DEBUGGER,
streaming=payload.response_mode == "streaming",
)

View File

@ -1,9 +1,11 @@
from flask_restx import reqparse
from flask_restx.inputs import int_range
from pydantic import TypeAdapter
from typing import Literal
from flask import request
from pydantic import BaseModel, Field, TypeAdapter, field_validator, model_validator
from sqlalchemy.orm import Session
from werkzeug.exceptions import NotFound
from controllers.common.schema import register_schema_models
from controllers.web import web_ns
from controllers.web.error import NotChatAppError
from controllers.web.wraps import WebApiResource
@ -21,6 +23,35 @@ from services.errors.conversation import ConversationNotExistsError, LastConvers
from services.web_conversation_service import WebConversationService
class ConversationListQuery(BaseModel):
last_id: str | None = None
limit: int = Field(default=20, ge=1, le=100)
pinned: bool | None = None
sort_by: Literal["created_at", "-created_at", "updated_at", "-updated_at"] = "-updated_at"
@field_validator("last_id")
@classmethod
def validate_last_id(cls, value: str | None) -> str | None:
if value is None:
return value
return uuid_value(value)
class ConversationRenamePayload(BaseModel):
name: str | None = None
auto_generate: bool = False
@model_validator(mode="after")
def validate_name_requirement(self):
if not self.auto_generate:
if self.name is None or not self.name.strip():
raise ValueError("name is required when auto_generate is false")
return self
register_schema_models(web_ns, ConversationListQuery, ConversationRenamePayload)
@web_ns.route("/conversations")
class ConversationListApi(WebApiResource):
@web_ns.doc("Get Conversation List")
@ -64,25 +95,8 @@ class ConversationListApi(WebApiResource):
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
raise NotChatAppError()
parser = (
reqparse.RequestParser()
.add_argument("last_id", type=uuid_value, location="args")
.add_argument("limit", type=int_range(1, 100), required=False, default=20, location="args")
.add_argument("pinned", type=str, choices=["true", "false", None], location="args")
.add_argument(
"sort_by",
type=str,
choices=["created_at", "-created_at", "updated_at", "-updated_at"],
required=False,
default="-updated_at",
location="args",
)
)
args = parser.parse_args()
pinned = None
if "pinned" in args and args["pinned"] is not None:
pinned = args["pinned"] == "true"
raw_args = request.args.to_dict()
query = ConversationListQuery.model_validate(raw_args)
try:
with Session(db.engine) as session:
@ -90,11 +104,11 @@ class ConversationListApi(WebApiResource):
session=session,
app_model=app_model,
user=end_user,
last_id=args["last_id"],
limit=args["limit"],
last_id=query.last_id,
limit=query.limit,
invoke_from=InvokeFrom.WEB_APP,
pinned=pinned,
sort_by=args["sort_by"],
pinned=query.pinned,
sort_by=query.sort_by,
)
adapter = TypeAdapter(SimpleConversation)
conversations = [adapter.validate_python(item, from_attributes=True) for item in pagination.data]
@ -168,16 +182,11 @@ class ConversationRenameApi(WebApiResource):
conversation_id = str(c_id)
parser = (
reqparse.RequestParser()
.add_argument("name", type=str, required=False, location="json")
.add_argument("auto_generate", type=bool, required=False, default=False, location="json")
)
args = parser.parse_args()
payload = ConversationRenamePayload.model_validate(web_ns.payload or {})
try:
conversation = ConversationService.rename(
app_model, conversation_id, end_user, args["name"], args["auto_generate"]
app_model, conversation_id, end_user, payload.name, payload.auto_generate
)
return (
TypeAdapter(SimpleConversation)

View File

@ -1,5 +1,4 @@
from flask import request
from flask_restx import marshal_with
import services
from controllers.common.errors import (
@ -9,12 +8,15 @@ from controllers.common.errors import (
TooManyFilesError,
UnsupportedFileTypeError,
)
from controllers.common.schema import register_schema_models
from controllers.web import web_ns
from controllers.web.wraps import WebApiResource
from extensions.ext_database import db
from fields.file_fields import build_file_model
from fields.file_fields import FileResponse
from services.file_service import FileService
register_schema_models(web_ns, FileResponse)
@web_ns.route("/files/upload")
class FileApi(WebApiResource):
@ -28,7 +30,7 @@ class FileApi(WebApiResource):
415: "Unsupported file type",
}
)
@marshal_with(build_file_model(web_ns))
@web_ns.response(201, "File uploaded successfully", web_ns.models[FileResponse.__name__])
def post(self, app_model, end_user):
"""Upload a file for use in web applications.
@ -81,4 +83,5 @@ class FileApi(WebApiResource):
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
return upload_file, 201
response = FileResponse.model_validate(upload_file, from_attributes=True)
return response.model_dump(mode="json"), 201

View File

@ -1,7 +1,6 @@
import urllib.parse
import httpx
from flask_restx import marshal_with
from pydantic import BaseModel, Field, HttpUrl
import services
@ -14,7 +13,7 @@ from controllers.common.errors import (
from core.file import helpers as file_helpers
from core.helper import ssrf_proxy
from extensions.ext_database import db
from fields.file_fields import build_file_with_signed_url_model, build_remote_file_info_model
from fields.file_fields import FileWithSignedUrl, RemoteFileInfo
from services.file_service import FileService
from ..common.schema import register_schema_models
@ -26,7 +25,7 @@ class RemoteFileUploadPayload(BaseModel):
url: HttpUrl = Field(description="Remote file URL")
register_schema_models(web_ns, RemoteFileUploadPayload)
register_schema_models(web_ns, RemoteFileUploadPayload, RemoteFileInfo, FileWithSignedUrl)
@web_ns.route("/remote-files/<path:url>")
@ -41,7 +40,7 @@ class RemoteFileInfoApi(WebApiResource):
500: "Failed to fetch remote file",
}
)
@marshal_with(build_remote_file_info_model(web_ns))
@web_ns.response(200, "Remote file info", web_ns.models[RemoteFileInfo.__name__])
def get(self, app_model, end_user, url):
"""Get information about a remote file.
@ -65,10 +64,11 @@ class RemoteFileInfoApi(WebApiResource):
# failed back to get method
resp = ssrf_proxy.get(decoded_url, timeout=3)
resp.raise_for_status()
return {
"file_type": resp.headers.get("Content-Type", "application/octet-stream"),
"file_length": int(resp.headers.get("Content-Length", -1)),
}
info = RemoteFileInfo(
file_type=resp.headers.get("Content-Type", "application/octet-stream"),
file_length=int(resp.headers.get("Content-Length", -1)),
)
return info.model_dump(mode="json")
@web_ns.route("/remote-files/upload")
@ -84,7 +84,7 @@ class RemoteFileUploadApi(WebApiResource):
500: "Failed to fetch remote file",
}
)
@marshal_with(build_file_with_signed_url_model(web_ns))
@web_ns.response(201, "Remote file uploaded", web_ns.models[FileWithSignedUrl.__name__])
def post(self, app_model, end_user):
"""Upload a file from a remote URL.
@ -139,13 +139,14 @@ class RemoteFileUploadApi(WebApiResource):
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError
return {
"id": upload_file.id,
"name": upload_file.name,
"size": upload_file.size,
"extension": upload_file.extension,
"url": file_helpers.get_signed_file_url(upload_file_id=upload_file.id),
"mime_type": upload_file.mime_type,
"created_by": upload_file.created_by,
"created_at": upload_file.created_at,
}, 201
payload1 = FileWithSignedUrl(
id=upload_file.id,
name=upload_file.name,
size=upload_file.size,
extension=upload_file.extension,
url=file_helpers.get_signed_file_url(upload_file_id=upload_file.id),
mime_type=upload_file.mime_type,
created_by=upload_file.created_by,
created_at=int(upload_file.created_at.timestamp()),
)
return payload1.model_dump(mode="json"), 201

View File

@ -1,18 +1,30 @@
from flask_restx import reqparse
from flask_restx.inputs import int_range
from pydantic import TypeAdapter
from flask import request
from pydantic import BaseModel, Field, TypeAdapter
from werkzeug.exceptions import NotFound
from controllers.common.schema import register_schema_models
from controllers.web import web_ns
from controllers.web.error import NotCompletionAppError
from controllers.web.wraps import WebApiResource
from fields.conversation_fields import ResultResponse
from fields.message_fields import SavedMessageInfiniteScrollPagination, SavedMessageItem
from libs.helper import uuid_value
from libs.helper import UUIDStrOrEmpty
from services.errors.message import MessageNotExistsError
from services.saved_message_service import SavedMessageService
class SavedMessageListQuery(BaseModel):
last_id: UUIDStrOrEmpty | None = None
limit: int = Field(default=20, ge=1, le=100)
class SavedMessageCreatePayload(BaseModel):
message_id: UUIDStrOrEmpty
register_schema_models(web_ns, SavedMessageListQuery, SavedMessageCreatePayload)
@web_ns.route("/saved-messages")
class SavedMessageListApi(WebApiResource):
@web_ns.doc("Get Saved Messages")
@ -42,14 +54,10 @@ class SavedMessageListApi(WebApiResource):
if app_model.mode != "completion":
raise NotCompletionAppError()
parser = (
reqparse.RequestParser()
.add_argument("last_id", type=uuid_value, location="args")
.add_argument("limit", type=int_range(1, 100), required=False, default=20, location="args")
)
args = parser.parse_args()
raw_args = request.args.to_dict()
query = SavedMessageListQuery.model_validate(raw_args)
pagination = SavedMessageService.pagination_by_last_id(app_model, end_user, args["last_id"], args["limit"])
pagination = SavedMessageService.pagination_by_last_id(app_model, end_user, query.last_id, query.limit)
adapter = TypeAdapter(SavedMessageItem)
items = [adapter.validate_python(message, from_attributes=True) for message in pagination.data]
return SavedMessageInfiniteScrollPagination(
@ -79,11 +87,10 @@ class SavedMessageListApi(WebApiResource):
if app_model.mode != "completion":
raise NotCompletionAppError()
parser = reqparse.RequestParser().add_argument("message_id", type=uuid_value, required=True, location="json")
args = parser.parse_args()
payload = SavedMessageCreatePayload.model_validate(web_ns.payload or {})
try:
SavedMessageService.save(app_model, end_user, args["message_id"])
SavedMessageService.save(app_model, end_user, payload.message_id)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")

View File

@ -0,0 +1,380 @@
import logging
from collections.abc import Generator
from copy import deepcopy
from typing import Any
from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentEntity, AgentLog, AgentResult
from core.agent.patterns.strategy_factory import StrategyFactory
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMUsage,
PromptMessage,
PromptMessageContentType,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.__base.tool import Tool
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from models.model import Message
logger = logging.getLogger(__name__)
class AgentAppRunner(BaseAgentRunner):
def _create_tool_invoke_hook(self, message: Message):
"""
Create a tool invoke hook that uses ToolEngine.agent_invoke.
This hook handles file creation and returns proper meta information.
"""
# Get trace manager from app generate entity
trace_manager = self.application_generate_entity.trace_manager
def tool_invoke_hook(
tool: Tool, tool_args: dict[str, Any], tool_name: str
) -> tuple[str, list[str], ToolInvokeMeta]:
"""Hook that uses agent_invoke for proper file and meta handling."""
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool,
tool_parameters=tool_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
app_id=self.application_generate_entity.app_config.app_id,
message_id=message.id,
conversation_id=self.conversation.id,
)
# Publish files and track IDs
for message_file_id in message_files:
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id),
PublishFrom.APPLICATION_MANAGER,
)
self._current_message_file_ids.append(message_file_id)
return tool_invoke_response, message_files, tool_invoke_meta
return tool_invoke_hook
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
"""
Run Agent application
"""
self.query = query
app_generate_entity = self.application_generate_entity
app_config = self.app_config
assert app_config is not None, "app_config is required"
assert app_config.agent is not None, "app_config.agent is required"
# convert tools into ModelRuntime Tool format
tool_instances, _ = self._init_prompt_tools()
assert app_config.agent
# Create tool invoke hook for agent_invoke
tool_invoke_hook = self._create_tool_invoke_hook(message)
# Get instruction for ReAct strategy
instruction = self.app_config.prompt_template.simple_prompt_template or ""
# Use factory to create appropriate strategy
strategy = StrategyFactory.create_strategy(
model_features=self.model_features,
model_instance=self.model_instance,
tools=list(tool_instances.values()),
files=list(self.files),
max_iterations=app_config.agent.max_iteration,
context=self.build_execution_context(),
agent_strategy=self.config.strategy,
tool_invoke_hook=tool_invoke_hook,
instruction=instruction,
)
# Initialize state variables
current_agent_thought_id = None
has_published_thought = False
current_tool_name: str | None = None
self._current_message_file_ids: list[str] = []
# organize prompt messages
prompt_messages = self._organize_prompt_messages()
# Run strategy
generator = strategy.run(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
stop=app_generate_entity.model_conf.stop,
stream=True,
)
# Consume generator and collect result
result: AgentResult | None = None
try:
while True:
try:
output = next(generator)
except StopIteration as e:
# Generator finished, get the return value
result = e.value
break
if isinstance(output, LLMResultChunk):
# Handle LLM chunk
if current_agent_thought_id and not has_published_thought:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
has_published_thought = True
yield output
elif isinstance(output, AgentLog):
# Handle Agent Log using log_type for type-safe dispatch
if output.status == AgentLog.LogStatus.START:
if output.log_type == AgentLog.LogType.ROUND:
# Start of a new round
message_file_ids: list[str] = []
current_agent_thought_id = self.create_agent_thought(
message_id=message.id,
message="",
tool_name="",
tool_input="",
messages_ids=message_file_ids,
)
has_published_thought = False
elif output.log_type == AgentLog.LogType.TOOL_CALL:
if current_agent_thought_id is None:
continue
# Tool call start - extract data from structured fields
current_tool_name = output.data.get("tool_name", "")
tool_input = output.data.get("tool_args", {})
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=current_tool_name,
tool_input=tool_input,
thought=None,
observation=None,
tool_invoke_meta=None,
answer=None,
messages_ids=[],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
elif output.status == AgentLog.LogStatus.SUCCESS:
if output.log_type == AgentLog.LogType.THOUGHT:
if current_agent_thought_id is None:
continue
thought_text = output.data.get("thought")
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=None,
tool_input=None,
thought=thought_text,
observation=None,
tool_invoke_meta=None,
answer=None,
messages_ids=[],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
elif output.log_type == AgentLog.LogType.TOOL_CALL:
if current_agent_thought_id is None:
continue
# Tool call finished
tool_output = output.data.get("output")
# Get meta from strategy output (now properly populated)
tool_meta = output.data.get("meta")
# Wrap tool_meta with tool_name as key (required by agent_service)
if tool_meta and current_tool_name:
tool_meta = {current_tool_name: tool_meta}
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=None,
tool_input=None,
thought=None,
observation=tool_output,
tool_invoke_meta=tool_meta,
answer=None,
messages_ids=self._current_message_file_ids,
)
# Clear message file ids after saving
self._current_message_file_ids = []
current_tool_name = None
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
elif output.log_type == AgentLog.LogType.ROUND:
if current_agent_thought_id is None:
continue
# Round finished - save LLM usage and answer
llm_usage = output.metadata.get(AgentLog.LogMetadata.LLM_USAGE)
llm_result = output.data.get("llm_result")
final_answer = output.data.get("final_answer")
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=None,
tool_input=None,
thought=llm_result,
observation=None,
tool_invoke_meta=None,
answer=final_answer,
messages_ids=[],
llm_usage=llm_usage,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
except Exception:
# Re-raise any other exceptions
raise
# Process final result
if isinstance(result, AgentResult):
final_answer = result.text
usage = result.usage or LLMUsage.empty_usage()
# Publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=self.model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=usage,
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Initialize system message
"""
if not prompt_template:
return prompt_messages or []
prompt_messages = prompt_messages or []
if prompt_messages and isinstance(prompt_messages[0], SystemPromptMessage):
prompt_messages[0] = SystemPromptMessage(content=prompt_template)
return prompt_messages
if not prompt_messages:
return [SystemPromptMessage(content=prompt_template)]
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
return prompt_messages
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
As for now, gpt supports both fc and vision at the first iteration.
We need to remove the image messages from the prompt messages at the first iteration.
"""
prompt_messages = deepcopy(prompt_messages)
for prompt_message in prompt_messages:
if isinstance(prompt_message, UserPromptMessage):
if isinstance(prompt_message.content, list):
prompt_message.content = "\n".join(
[
content.data
if content.type == PromptMessageContentType.TEXT
else "[image]"
if content.type == PromptMessageContentType.IMAGE
else "[file]"
for content in prompt_message.content
]
)
return prompt_messages
def _organize_prompt_messages(self):
# For ReAct strategy, use the agent prompt template
if self.config.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT and self.config.prompt:
prompt_template = self.config.prompt.first_prompt
else:
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
query_prompt_messages = self._organize_user_query(self.query or "", [])
self.history_prompt_messages = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
history_messages=self.history_prompt_messages,
memory=self.memory,
).get_prompt()
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
if len(self._current_thoughts) != 0:
# clear messages after the first iteration
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
return prompt_messages

View File

@ -5,7 +5,7 @@ from typing import Union, cast
from sqlalchemy import select
from core.agent.entities import AgentEntity, AgentToolEntity
from core.agent.entities import AgentEntity, AgentToolEntity, ExecutionContext
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager
@ -114,9 +114,20 @@ class BaseAgentRunner(AppRunner):
features = model_schema.features if model_schema and model_schema.features else []
self.stream_tool_call = ModelFeature.STREAM_TOOL_CALL in features
self.files = application_generate_entity.files if ModelFeature.VISION in features else []
self.model_features = features
self.query: str | None = ""
self._current_thoughts: list[PromptMessage] = []
def build_execution_context(self) -> ExecutionContext:
"""Build execution context."""
return ExecutionContext(
user_id=self.user_id,
app_id=self.app_config.app_id,
conversation_id=self.conversation.id,
message_id=self.message.id,
tenant_id=self.tenant_id,
)
def _repack_app_generate_entity(
self, app_generate_entity: AgentChatAppGenerateEntity
) -> AgentChatAppGenerateEntity:

View File

@ -1,437 +0,0 @@
import json
import logging
from abc import ABC, abstractmethod
from collections.abc import Generator, Mapping, Sequence
from typing import Any
from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentScratchpadUnit
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageTool,
ToolPromptMessage,
UserPromptMessage,
)
from core.ops.ops_trace_manager import TraceQueueManager
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.__base.tool import Tool
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from core.workflow.nodes.agent.exc import AgentMaxIterationError
from models.model import Message
logger = logging.getLogger(__name__)
class CotAgentRunner(BaseAgentRunner, ABC):
_is_first_iteration = True
_ignore_observation_providers = ["wenxin"]
_historic_prompt_messages: list[PromptMessage]
_agent_scratchpad: list[AgentScratchpadUnit]
_instruction: str
_query: str
_prompt_messages_tools: Sequence[PromptMessageTool]
def run(
self,
message: Message,
query: str,
inputs: Mapping[str, str],
) -> Generator:
"""
Run Cot agent application
"""
app_generate_entity = self.application_generate_entity
self._repack_app_generate_entity(app_generate_entity)
self._init_react_state(query)
trace_manager = app_generate_entity.trace_manager
# check model mode
if "Observation" not in app_generate_entity.model_conf.stop:
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
app_generate_entity.model_conf.stop.append("Observation")
app_config = self.app_config
assert app_config.agent
# init instruction
inputs = inputs or {}
instruction = app_config.prompt_template.simple_prompt_template or ""
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
# convert tools into ModelRuntime Tool format
tool_instances, prompt_messages_tools = self._init_prompt_tools()
self._prompt_messages_tools = prompt_messages_tools
function_call_state = True
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
final_answer = ""
prompt_messages: list = [] # Initialize prompt_messages
agent_thought_id = "" # Initialize agent_thought_id
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
if not final_llm_usage_dict["usage"]:
final_llm_usage_dict["usage"] = usage
else:
llm_usage = final_llm_usage_dict["usage"]
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.total_tokens += usage.total_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
llm_usage.total_price += usage.total_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
# continue to run until there is not any tool call
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
self._prompt_messages_tools = []
message_file_ids: list[str] = []
agent_thought_id = self.create_agent_thought(
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
)
if iteration_step > 1:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
tools=[],
stop=app_generate_entity.model_conf.stop,
stream=True,
user=self.user_id,
callbacks=[],
)
usage_dict: dict[str, LLMUsage | None] = {}
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
scratchpad = AgentScratchpadUnit(
agent_response="",
thought="",
action_str="",
observation="",
action=None,
)
# publish agent thought if it's first iteration
if iteration_step == 1:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
for chunk in react_chunks:
if isinstance(chunk, AgentScratchpadUnit.Action):
action = chunk
# detect action
assert scratchpad.agent_response is not None
scratchpad.agent_response += json.dumps(chunk.model_dump())
scratchpad.action_str = json.dumps(chunk.model_dump())
scratchpad.action = action
else:
assert scratchpad.agent_response is not None
scratchpad.agent_response += chunk
assert scratchpad.thought is not None
scratchpad.thought += chunk
yield LLMResultChunk(
model=self.model_config.model,
prompt_messages=prompt_messages,
system_fingerprint="",
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
)
assert scratchpad.thought is not None
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
self._agent_scratchpad.append(scratchpad)
# Check if max iteration is reached and model still wants to call tools
if iteration_step == max_iteration_steps and scratchpad.action:
if scratchpad.action.action_name.lower() != "final answer":
raise AgentMaxIterationError(app_config.agent.max_iteration)
# get llm usage
if "usage" in usage_dict:
if usage_dict["usage"] is not None:
increase_usage(llm_usage, usage_dict["usage"])
else:
usage_dict["usage"] = LLMUsage.empty_usage()
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
tool_invoke_meta={},
thought=scratchpad.thought or "",
observation="",
answer=scratchpad.agent_response or "",
messages_ids=[],
llm_usage=usage_dict["usage"],
)
if not scratchpad.is_final():
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
if not scratchpad.action:
# failed to extract action, return final answer directly
final_answer = ""
else:
if scratchpad.action.action_name.lower() == "final answer":
# action is final answer, return final answer directly
try:
if isinstance(scratchpad.action.action_input, dict):
final_answer = json.dumps(scratchpad.action.action_input, ensure_ascii=False)
elif isinstance(scratchpad.action.action_input, str):
final_answer = scratchpad.action.action_input
else:
final_answer = f"{scratchpad.action.action_input}"
except TypeError:
final_answer = f"{scratchpad.action.action_input}"
else:
function_call_state = True
# action is tool call, invoke tool
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
action=scratchpad.action,
tool_instances=tool_instances,
message_file_ids=message_file_ids,
trace_manager=trace_manager,
)
scratchpad.observation = tool_invoke_response
scratchpad.agent_response = tool_invoke_response
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=scratchpad.action.action_name,
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
thought=scratchpad.thought or "",
observation={scratchpad.action.action_name: tool_invoke_response},
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
answer=scratchpad.agent_response,
messages_ids=message_file_ids,
llm_usage=usage_dict["usage"],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# update prompt tool message
for prompt_tool in self._prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
),
system_fingerprint="",
)
# save agent thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name="",
tool_input={},
tool_invoke_meta={},
thought=final_answer,
observation={},
answer=final_answer,
messages_ids=[],
)
# publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def _handle_invoke_action(
self,
action: AgentScratchpadUnit.Action,
tool_instances: Mapping[str, Tool],
message_file_ids: list[str],
trace_manager: TraceQueueManager | None = None,
) -> tuple[str, ToolInvokeMeta]:
"""
handle invoke action
:param action: action
:param tool_instances: tool instances
:param message_file_ids: message file ids
:param trace_manager: trace manager
:return: observation, meta
"""
# action is tool call, invoke tool
tool_call_name = action.action_name
tool_call_args = action.action_input
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
answer = f"there is not a tool named {tool_call_name}"
return answer, ToolInvokeMeta.error_instance(answer)
if isinstance(tool_call_args, str):
try:
tool_call_args = json.loads(tool_call_args)
except json.JSONDecodeError:
pass
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
)
# publish files
for message_file_id in message_files:
# publish message file
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
)
# add message file ids
message_file_ids.append(message_file_id)
return tool_invoke_response, tool_invoke_meta
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
"""
convert dict to action
"""
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: Mapping[str, Any]) -> str:
"""
fill in inputs from external data tools
"""
for key, value in inputs.items():
try:
instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
except Exception:
continue
return instruction
def _init_react_state(self, query):
"""
init agent scratchpad
"""
self._query = query
self._agent_scratchpad = []
self._historic_prompt_messages = self._organize_historic_prompt_messages()
@abstractmethod
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
organize prompt messages
"""
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
"""
format assistant message
"""
message = ""
for scratchpad in agent_scratchpad:
if scratchpad.is_final():
message += f"Final Answer: {scratchpad.agent_response}"
else:
message += f"Thought: {scratchpad.thought}\n\n"
if scratchpad.action_str:
message += f"Action: {scratchpad.action_str}\n\n"
if scratchpad.observation:
message += f"Observation: {scratchpad.observation}\n\n"
return message
def _organize_historic_prompt_messages(
self, current_session_messages: list[PromptMessage] | None = None
) -> list[PromptMessage]:
"""
organize historic prompt messages
"""
result: list[PromptMessage] = []
scratchpads: list[AgentScratchpadUnit] = []
current_scratchpad: AgentScratchpadUnit | None = None
for message in self.history_prompt_messages:
if isinstance(message, AssistantPromptMessage):
if not current_scratchpad:
assert isinstance(message.content, str)
current_scratchpad = AgentScratchpadUnit(
agent_response=message.content,
thought=message.content or "I am thinking about how to help you",
action_str="",
action=None,
observation=None,
)
scratchpads.append(current_scratchpad)
if message.tool_calls:
try:
current_scratchpad.action = AgentScratchpadUnit.Action(
action_name=message.tool_calls[0].function.name,
action_input=json.loads(message.tool_calls[0].function.arguments),
)
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
except Exception:
logger.exception("Failed to parse tool call from assistant message")
elif isinstance(message, ToolPromptMessage):
if current_scratchpad:
assert isinstance(message.content, str)
current_scratchpad.observation = message.content
else:
raise NotImplementedError("expected str type")
elif isinstance(message, UserPromptMessage):
if scratchpads:
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
scratchpads = []
current_scratchpad = None
result.append(message)
if scratchpads:
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
historic_prompts = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=current_session_messages or [],
history_messages=result,
memory=self.memory,
).get_prompt()
return historic_prompts

View File

@ -1,118 +0,0 @@
import json
from core.agent.cot_agent_runner import CotAgentRunner
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
PromptMessage,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.model_runtime.utils.encoders import jsonable_encoder
class CotChatAgentRunner(CotAgentRunner):
def _organize_system_prompt(self) -> SystemPromptMessage:
"""
Organize system prompt
"""
assert self.app_config.agent
assert self.app_config.agent.prompt
prompt_entity = self.app_config.agent.prompt
if not prompt_entity:
raise ValueError("Agent prompt configuration is not set")
first_prompt = prompt_entity.first_prompt
system_prompt = (
first_prompt.replace("{{instruction}}", self._instruction)
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
)
return SystemPromptMessage(content=system_prompt)
def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
Organize
"""
# organize system prompt
system_message = self._organize_system_prompt()
# organize current assistant messages
agent_scratchpad = self._agent_scratchpad
if not agent_scratchpad:
assistant_messages = []
else:
assistant_message = AssistantPromptMessage(content="")
assistant_message.content = "" # FIXME: type check tell mypy that assistant_message.content is str
for unit in agent_scratchpad:
if unit.is_final():
assert isinstance(assistant_message.content, str)
assistant_message.content += f"Final Answer: {unit.agent_response}"
else:
assert isinstance(assistant_message.content, str)
assistant_message.content += f"Thought: {unit.thought}\n\n"
if unit.action_str:
assistant_message.content += f"Action: {unit.action_str}\n\n"
if unit.observation:
assistant_message.content += f"Observation: {unit.observation}\n\n"
assistant_messages = [assistant_message]
# query messages
query_messages = self._organize_user_query(self._query, [])
if assistant_messages:
# organize historic prompt messages
historic_messages = self._organize_historic_prompt_messages(
[system_message, *query_messages, *assistant_messages, UserPromptMessage(content="continue")]
)
messages = [
system_message,
*historic_messages,
*query_messages,
*assistant_messages,
UserPromptMessage(content="continue"),
]
else:
# organize historic prompt messages
historic_messages = self._organize_historic_prompt_messages([system_message, *query_messages])
messages = [system_message, *historic_messages, *query_messages]
# join all messages
return messages

View File

@ -1,87 +0,0 @@
import json
from core.agent.cot_agent_runner import CotAgentRunner
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.utils.encoders import jsonable_encoder
class CotCompletionAgentRunner(CotAgentRunner):
def _organize_instruction_prompt(self) -> str:
"""
Organize instruction prompt
"""
if self.app_config.agent is None:
raise ValueError("Agent configuration is not set")
prompt_entity = self.app_config.agent.prompt
if prompt_entity is None:
raise ValueError("prompt entity is not set")
first_prompt = prompt_entity.first_prompt
system_prompt = (
first_prompt.replace("{{instruction}}", self._instruction)
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
)
return system_prompt
def _organize_historic_prompt(self, current_session_messages: list[PromptMessage] | None = None) -> str:
"""
Organize historic prompt
"""
historic_prompt_messages = self._organize_historic_prompt_messages(current_session_messages)
historic_prompt = ""
for message in historic_prompt_messages:
if isinstance(message, UserPromptMessage):
historic_prompt += f"Question: {message.content}\n\n"
elif isinstance(message, AssistantPromptMessage):
if isinstance(message.content, str):
historic_prompt += message.content + "\n\n"
elif isinstance(message.content, list):
for content in message.content:
if not isinstance(content, TextPromptMessageContent):
continue
historic_prompt += content.data
return historic_prompt
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
Organize prompt messages
"""
# organize system prompt
system_prompt = self._organize_instruction_prompt()
# organize historic prompt messages
historic_prompt = self._organize_historic_prompt()
# organize current assistant messages
agent_scratchpad = self._agent_scratchpad
assistant_prompt = ""
for unit in agent_scratchpad or []:
if unit.is_final():
assistant_prompt += f"Final Answer: {unit.agent_response}"
else:
assistant_prompt += f"Thought: {unit.thought}\n\n"
if unit.action_str:
assistant_prompt += f"Action: {unit.action_str}\n\n"
if unit.observation:
assistant_prompt += f"Observation: {unit.observation}\n\n"
# query messages
query_prompt = f"Question: {self._query}"
# join all messages
prompt = (
system_prompt.replace("{{historic_messages}}", historic_prompt)
.replace("{{agent_scratchpad}}", assistant_prompt)
.replace("{{query}}", query_prompt)
)
return [UserPromptMessage(content=prompt)]

View File

@ -1,3 +1,5 @@
import uuid
from collections.abc import Mapping
from enum import StrEnum
from typing import Any, Union
@ -92,3 +94,96 @@ class AgentInvokeMessage(ToolInvokeMessage):
"""
pass
class ExecutionContext(BaseModel):
"""Execution context containing trace and audit information.
This context carries all the IDs and metadata that are not part of
the core business logic but needed for tracing, auditing, and
correlation purposes.
"""
user_id: str | None = None
app_id: str | None = None
conversation_id: str | None = None
message_id: str | None = None
tenant_id: str | None = None
@classmethod
def create_minimal(cls, user_id: str | None = None) -> "ExecutionContext":
"""Create a minimal context with only essential fields."""
return cls(user_id=user_id)
def to_dict(self) -> dict[str, Any]:
"""Convert to dictionary for passing to legacy code."""
return {
"user_id": self.user_id,
"app_id": self.app_id,
"conversation_id": self.conversation_id,
"message_id": self.message_id,
"tenant_id": self.tenant_id,
}
def with_updates(self, **kwargs) -> "ExecutionContext":
"""Create a new context with updated fields."""
data = self.to_dict()
data.update(kwargs)
return ExecutionContext(
user_id=data.get("user_id"),
app_id=data.get("app_id"),
conversation_id=data.get("conversation_id"),
message_id=data.get("message_id"),
tenant_id=data.get("tenant_id"),
)
class AgentLog(BaseModel):
"""
Agent Log.
"""
class LogType(StrEnum):
"""Type of agent log entry."""
ROUND = "round" # A complete iteration round
THOUGHT = "thought" # LLM thinking/reasoning
TOOL_CALL = "tool_call" # Tool invocation
class LogMetadata(StrEnum):
STARTED_AT = "started_at"
FINISHED_AT = "finished_at"
ELAPSED_TIME = "elapsed_time"
TOTAL_PRICE = "total_price"
TOTAL_TOKENS = "total_tokens"
PROVIDER = "provider"
CURRENCY = "currency"
LLM_USAGE = "llm_usage"
ICON = "icon"
ICON_DARK = "icon_dark"
class LogStatus(StrEnum):
START = "start"
ERROR = "error"
SUCCESS = "success"
id: str = Field(default_factory=lambda: str(uuid.uuid4()), description="The id of the log")
label: str = Field(..., description="The label of the log")
log_type: LogType = Field(..., description="The type of the log")
parent_id: str | None = Field(default=None, description="Leave empty for root log")
error: str | None = Field(default=None, description="The error message")
status: LogStatus = Field(..., description="The status of the log")
data: Mapping[str, Any] = Field(..., description="Detailed log data")
metadata: Mapping[LogMetadata, Any] = Field(default={}, description="The metadata of the log")
class AgentResult(BaseModel):
"""
Agent execution result.
"""
text: str = Field(default="", description="The generated text")
files: list[Any] = Field(default_factory=list, description="Files produced during execution")
usage: Any | None = Field(default=None, description="LLM usage statistics")
finish_reason: str | None = Field(default=None, description="Reason for completion")

View File

@ -1,470 +0,0 @@
import json
import logging
from collections.abc import Generator
from copy import deepcopy
from typing import Any, Union
from core.agent.base_agent_runner import BaseAgentRunner
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
LLMUsage,
PromptMessage,
PromptMessageContentType,
SystemPromptMessage,
TextPromptMessageContent,
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from core.workflow.nodes.agent.exc import AgentMaxIterationError
from models.model import Message
logger = logging.getLogger(__name__)
class FunctionCallAgentRunner(BaseAgentRunner):
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
"""
Run FunctionCall agent application
"""
self.query = query
app_generate_entity = self.application_generate_entity
app_config = self.app_config
assert app_config is not None, "app_config is required"
assert app_config.agent is not None, "app_config.agent is required"
# convert tools into ModelRuntime Tool format
tool_instances, prompt_messages_tools = self._init_prompt_tools()
assert app_config.agent
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
# continue to run until there is not any tool call
function_call_state = True
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
final_answer = ""
prompt_messages: list = [] # Initialize prompt_messages
# get tracing instance
trace_manager = app_generate_entity.trace_manager
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
if not final_llm_usage_dict["usage"]:
final_llm_usage_dict["usage"] = usage
else:
llm_usage = final_llm_usage_dict["usage"]
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.total_tokens += usage.total_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
llm_usage.total_price += usage.total_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
prompt_messages_tools = []
message_file_ids: list[str] = []
agent_thought_id = self.create_agent_thought(
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
tools=prompt_messages_tools,
stop=app_generate_entity.model_conf.stop,
stream=self.stream_tool_call,
user=self.user_id,
callbacks=[],
)
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
# save full response
response = ""
# save tool call names and inputs
tool_call_names = ""
tool_call_inputs = ""
current_llm_usage = None
if isinstance(chunks, Generator):
is_first_chunk = True
for chunk in chunks:
if is_first_chunk:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
is_first_chunk = False
# check if there is any tool call
if self.check_tool_calls(chunk):
function_call_state = True
tool_calls.extend(self.extract_tool_calls(chunk) or [])
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps(
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
)
except TypeError:
# fallback: force ASCII to handle non-serializable objects
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
if chunk.delta.message and chunk.delta.message.content:
if isinstance(chunk.delta.message.content, list):
for content in chunk.delta.message.content:
response += content.data
else:
response += str(chunk.delta.message.content)
if chunk.delta.usage:
increase_usage(llm_usage, chunk.delta.usage)
current_llm_usage = chunk.delta.usage
yield chunk
else:
result = chunks
# check if there is any tool call
if self.check_blocking_tool_calls(result):
function_call_state = True
tool_calls.extend(self.extract_blocking_tool_calls(result) or [])
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps(
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
)
except TypeError:
# fallback: force ASCII to handle non-serializable objects
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
if result.usage:
increase_usage(llm_usage, result.usage)
current_llm_usage = result.usage
if result.message and result.message.content:
if isinstance(result.message.content, list):
for content in result.message.content:
response += content.data
else:
response += str(result.message.content)
if not result.message.content:
result.message.content = ""
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=result.prompt_messages,
system_fingerprint=result.system_fingerprint,
delta=LLMResultChunkDelta(
index=0,
message=result.message,
usage=result.usage,
),
)
assistant_message = AssistantPromptMessage(content="", tool_calls=[])
if tool_calls:
assistant_message.tool_calls = [
AssistantPromptMessage.ToolCall(
id=tool_call[0],
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
),
)
for tool_call in tool_calls
]
else:
assistant_message.content = response
self._current_thoughts.append(assistant_message)
# save thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=tool_call_names,
tool_input=tool_call_inputs,
thought=response,
tool_invoke_meta=None,
observation=None,
answer=response,
messages_ids=[],
llm_usage=current_llm_usage,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
final_answer += response + "\n"
# Check if max iteration is reached and model still wants to call tools
if iteration_step == max_iteration_steps and tool_calls:
raise AgentMaxIterationError(app_config.agent.max_iteration)
# call tools
tool_responses = []
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": f"there is not a tool named {tool_call_name}",
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
}
else:
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
app_id=self.application_generate_entity.app_config.app_id,
message_id=self.message.id,
conversation_id=self.conversation.id,
)
# publish files
for message_file_id in message_files:
# publish message file
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
)
# add message file ids
message_file_ids.append(message_file_id)
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": tool_invoke_response,
"meta": tool_invoke_meta.to_dict(),
}
tool_responses.append(tool_response)
if tool_response["tool_response"] is not None:
self._current_thoughts.append(
ToolPromptMessage(
content=str(tool_response["tool_response"]),
tool_call_id=tool_call_id,
name=tool_call_name,
)
)
if len(tool_responses) > 0:
# save agent thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name="",
tool_input="",
thought="",
tool_invoke_meta={
tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
},
observation={
tool_response["tool_call_name"]: tool_response["tool_response"]
for tool_response in tool_responses
},
answer="",
messages_ids=message_file_ids,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# update prompt tool
for prompt_tool in prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
# publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
"""
Check if there is any tool call in llm result chunk
"""
if llm_result_chunk.delta.message.tool_calls:
return True
return False
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
"""
Check if there is any blocking tool call in llm result
"""
if llm_result.message.tool_calls:
return True
return False
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
"""
Extract tool calls from llm result chunk
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result_chunk.delta.message.tool_calls:
args = {}
if prompt_message.function.arguments != "":
args = json.loads(prompt_message.function.arguments)
tool_calls.append(
(
prompt_message.id,
prompt_message.function.name,
args,
)
)
return tool_calls
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
"""
Extract blocking tool calls from llm result
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result.message.tool_calls:
args = {}
if prompt_message.function.arguments != "":
args = json.loads(prompt_message.function.arguments)
tool_calls.append(
(
prompt_message.id,
prompt_message.function.name,
args,
)
)
return tool_calls
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Initialize system message
"""
if not prompt_messages and prompt_template:
return [
SystemPromptMessage(content=prompt_template),
]
if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
return prompt_messages or []
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
As for now, gpt supports both fc and vision at the first iteration.
We need to remove the image messages from the prompt messages at the first iteration.
"""
prompt_messages = deepcopy(prompt_messages)
for prompt_message in prompt_messages:
if isinstance(prompt_message, UserPromptMessage):
if isinstance(prompt_message.content, list):
prompt_message.content = "\n".join(
[
content.data
if content.type == PromptMessageContentType.TEXT
else "[image]"
if content.type == PromptMessageContentType.IMAGE
else "[file]"
for content in prompt_message.content
]
)
return prompt_messages
def _organize_prompt_messages(self):
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
query_prompt_messages = self._organize_user_query(self.query or "", [])
self.history_prompt_messages = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
history_messages=self.history_prompt_messages,
memory=self.memory,
).get_prompt()
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
if len(self._current_thoughts) != 0:
# clear messages after the first iteration
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
return prompt_messages

View File

@ -0,0 +1,55 @@
# Agent Patterns
A unified agent pattern module that powers both Agent V2 workflow nodes and agent applications. Strategies share a common execution contract while adapting to model capabilities and tool availability.
## Overview
The module applies a strategy pattern around LLM/tool orchestration. `StrategyFactory` auto-selects the best implementation based on model features or an explicit agent strategy, and each strategy streams logs and usage consistently.
## Key Features
- **Dual strategies**
- `FunctionCallStrategy`: uses native LLM function/tool calling when the model exposes `TOOL_CALL`, `MULTI_TOOL_CALL`, or `STREAM_TOOL_CALL`.
- `ReActStrategy`: ReAct (reasoning + acting) flow driven by `CotAgentOutputParser`, used when function calling is unavailable or explicitly requested.
- **Explicit or auto selection**
- `StrategyFactory.create_strategy` prefers an explicit `AgentEntity.Strategy` (FUNCTION_CALLING or CHAIN_OF_THOUGHT).
- Otherwise it falls back to function calling when tool-call features exist, or ReAct when they do not.
- **Unified execution contract**
- `AgentPattern.run` yields streaming `AgentLog` entries and `LLMResultChunk` data, returning an `AgentResult` with text, files, usage, and `finish_reason`.
- Iterations are configurable and hard-capped at 99 rounds; the last round forces a final answer by withholding tools.
- **Tool handling and hooks**
- Tools convert to `PromptMessageTool` objects before invocation.
- Optional `tool_invoke_hook` lets callers override tool execution (e.g., agent apps) while workflow runs use `ToolEngine.generic_invoke`.
- Tool outputs support text, links, JSON, variables, blobs, retriever resources, and file attachments; `target=="self"` files are reloaded into model context, others are returned as outputs.
- **File-aware arguments**
- Tool args accept `[File: <id>]` or `[Files: <id1, id2>]` placeholders that resolve to `File` objects before invocation, enabling models to reference uploaded files safely.
- **ReAct prompt shaping**
- System prompts replace `{{instruction}}`, `{{tools}}`, and `{{tool_names}}` placeholders.
- Adds `Observation` to stop sequences and appends scratchpad text so the model sees prior Thought/Action/Observation history.
- **Observability and accounting**
- Standardized `AgentLog` entries for rounds, model thoughts, and tool calls, including usage aggregation (`LLMUsage`) across streaming and non-streaming paths.
## Architecture
```
agent/patterns/
├── base.py # Shared utilities: logging, usage, tool invocation, file handling
├── function_call.py # Native function-calling loop with tool execution
├── react.py # ReAct loop with CoT parsing and scratchpad wiring
└── strategy_factory.py # Strategy selection by model features or explicit override
```
## Usage
- For auto-selection:
- Call `StrategyFactory.create_strategy(model_features, model_instance, context, tools, files, ...)` and run the returned strategy with prompt messages and model params.
- For explicit behavior:
- Pass `agent_strategy=AgentEntity.Strategy.FUNCTION_CALLING` to force native calls (falls back to ReAct if unsupported), or `CHAIN_OF_THOUGHT` to force ReAct.
- Both strategies stream chunks and logs; collect the generator output until it returns an `AgentResult`.
## Integration Points
- **Model runtime**: delegates to `ModelInstance.invoke_llm` for both streaming and non-streaming calls.
- **Tool system**: defaults to `ToolEngine.generic_invoke`, with `tool_invoke_hook` for custom callers.
- **Files**: flows through `File` objects for tool inputs/outputs and model-context attachments.
- **Execution context**: `ExecutionContext` fields (user/app/conversation/message) propagate to tool invocations and logging.

View File

@ -0,0 +1,19 @@
"""Agent patterns module.
This module provides different strategies for agent execution:
- FunctionCallStrategy: Uses native function/tool calling
- ReActStrategy: Uses ReAct (Reasoning + Acting) approach
- StrategyFactory: Factory for creating strategies based on model features
"""
from .base import AgentPattern
from .function_call import FunctionCallStrategy
from .react import ReActStrategy
from .strategy_factory import StrategyFactory
__all__ = [
"AgentPattern",
"FunctionCallStrategy",
"ReActStrategy",
"StrategyFactory",
]

View File

@ -0,0 +1,474 @@
"""Base class for agent strategies."""
from __future__ import annotations
import json
import re
import time
from abc import ABC, abstractmethod
from collections.abc import Callable, Generator
from typing import TYPE_CHECKING, Any
from core.agent.entities import AgentLog, AgentResult, ExecutionContext
from core.file import File
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
PromptMessage,
PromptMessageTool,
)
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.entities.message_entities import TextPromptMessageContent
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMeta
if TYPE_CHECKING:
from core.tools.__base.tool import Tool
# Type alias for tool invoke hook
# Returns: (response_content, message_file_ids, tool_invoke_meta)
ToolInvokeHook = Callable[["Tool", dict[str, Any], str], tuple[str, list[str], ToolInvokeMeta]]
class AgentPattern(ABC):
"""Base class for agent execution strategies."""
def __init__(
self,
model_instance: ModelInstance,
tools: list[Tool],
context: ExecutionContext,
max_iterations: int = 10,
workflow_call_depth: int = 0,
files: list[File] = [],
tool_invoke_hook: ToolInvokeHook | None = None,
):
"""Initialize the agent strategy."""
self.model_instance = model_instance
self.tools = tools
self.context = context
self.max_iterations = min(max_iterations, 99) # Cap at 99 iterations
self.workflow_call_depth = workflow_call_depth
self.files: list[File] = files
self.tool_invoke_hook = tool_invoke_hook
@abstractmethod
def run(
self,
prompt_messages: list[PromptMessage],
model_parameters: dict[str, Any],
stop: list[str] = [],
stream: bool = True,
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
"""Execute the agent strategy."""
pass
def _accumulate_usage(self, total_usage: dict[str, Any], delta_usage: LLMUsage) -> None:
"""Accumulate LLM usage statistics."""
if not total_usage.get("usage"):
# Create a copy to avoid modifying the original
total_usage["usage"] = LLMUsage(
prompt_tokens=delta_usage.prompt_tokens,
prompt_unit_price=delta_usage.prompt_unit_price,
prompt_price_unit=delta_usage.prompt_price_unit,
prompt_price=delta_usage.prompt_price,
completion_tokens=delta_usage.completion_tokens,
completion_unit_price=delta_usage.completion_unit_price,
completion_price_unit=delta_usage.completion_price_unit,
completion_price=delta_usage.completion_price,
total_tokens=delta_usage.total_tokens,
total_price=delta_usage.total_price,
currency=delta_usage.currency,
latency=delta_usage.latency,
)
else:
current: LLMUsage = total_usage["usage"]
current.prompt_tokens += delta_usage.prompt_tokens
current.completion_tokens += delta_usage.completion_tokens
current.total_tokens += delta_usage.total_tokens
current.prompt_price += delta_usage.prompt_price
current.completion_price += delta_usage.completion_price
current.total_price += delta_usage.total_price
def _extract_content(self, content: Any) -> str:
"""Extract text content from message content."""
if isinstance(content, list):
# Content items are PromptMessageContentUnionTypes
text_parts = []
for c in content:
# Check if it's a TextPromptMessageContent (which has data attribute)
if isinstance(c, TextPromptMessageContent):
text_parts.append(c.data)
return "".join(text_parts)
return str(content)
def _has_tool_calls(self, chunk: LLMResultChunk) -> bool:
"""Check if chunk contains tool calls."""
# LLMResultChunk always has delta attribute
return bool(chunk.delta.message and chunk.delta.message.tool_calls)
def _has_tool_calls_result(self, result: LLMResult) -> bool:
"""Check if result contains tool calls (non-streaming)."""
# LLMResult always has message attribute
return bool(result.message and result.message.tool_calls)
def _extract_tool_calls(self, chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
"""Extract tool calls from streaming chunk."""
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
if chunk.delta.message and chunk.delta.message.tool_calls:
for tool_call in chunk.delta.message.tool_calls:
if tool_call.function:
try:
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
except json.JSONDecodeError:
args = {}
tool_calls.append((tool_call.id or "", tool_call.function.name, args))
return tool_calls
def _extract_tool_calls_result(self, result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
"""Extract tool calls from non-streaming result."""
tool_calls = []
if result.message and result.message.tool_calls:
for tool_call in result.message.tool_calls:
if tool_call.function:
try:
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
except json.JSONDecodeError:
args = {}
tool_calls.append((tool_call.id or "", tool_call.function.name, args))
return tool_calls
def _extract_text_from_message(self, message: PromptMessage) -> str:
"""Extract text content from a prompt message."""
# PromptMessage always has content attribute
content = message.content
if isinstance(content, str):
return content
elif isinstance(content, list):
# Extract text from content list
text_parts = []
for item in content:
if isinstance(item, TextPromptMessageContent):
text_parts.append(item.data)
return " ".join(text_parts)
return ""
def _get_tool_metadata(self, tool_instance: Tool) -> dict[AgentLog.LogMetadata, Any]:
"""Get metadata for a tool including provider and icon info."""
from core.tools.tool_manager import ToolManager
metadata: dict[AgentLog.LogMetadata, Any] = {}
if tool_instance.entity and tool_instance.entity.identity:
identity = tool_instance.entity.identity
if identity.provider:
metadata[AgentLog.LogMetadata.PROVIDER] = identity.provider
# Get icon using ToolManager for proper URL generation
tenant_id = self.context.tenant_id
if tenant_id and identity.provider:
try:
provider_type = tool_instance.tool_provider_type()
icon = ToolManager.get_tool_icon(tenant_id, provider_type, identity.provider)
if isinstance(icon, str):
metadata[AgentLog.LogMetadata.ICON] = icon
elif isinstance(icon, dict):
# Handle icon dict with background/content or light/dark variants
metadata[AgentLog.LogMetadata.ICON] = icon
except Exception:
# Fallback to identity.icon if ToolManager fails
if identity.icon:
metadata[AgentLog.LogMetadata.ICON] = identity.icon
elif identity.icon:
metadata[AgentLog.LogMetadata.ICON] = identity.icon
return metadata
def _create_log(
self,
label: str,
log_type: AgentLog.LogType,
status: AgentLog.LogStatus,
data: dict[str, Any] | None = None,
parent_id: str | None = None,
extra_metadata: dict[AgentLog.LogMetadata, Any] | None = None,
) -> AgentLog:
"""Create a new AgentLog with standard metadata."""
metadata: dict[AgentLog.LogMetadata, Any] = {
AgentLog.LogMetadata.STARTED_AT: time.perf_counter(),
}
if extra_metadata:
metadata.update(extra_metadata)
return AgentLog(
label=label,
log_type=log_type,
status=status,
data=data or {},
parent_id=parent_id,
metadata=metadata,
)
def _finish_log(
self,
log: AgentLog,
data: dict[str, Any] | None = None,
usage: LLMUsage | None = None,
) -> AgentLog:
"""Finish an AgentLog by updating its status and metadata."""
log.status = AgentLog.LogStatus.SUCCESS
if data is not None:
log.data = data
# Calculate elapsed time
started_at = log.metadata.get(AgentLog.LogMetadata.STARTED_AT, time.perf_counter())
finished_at = time.perf_counter()
# Update metadata
log.metadata = {
**log.metadata,
AgentLog.LogMetadata.FINISHED_AT: finished_at,
# Calculate elapsed time in seconds
AgentLog.LogMetadata.ELAPSED_TIME: round(finished_at - started_at, 4),
}
# Add usage information if provided
if usage:
log.metadata.update(
{
AgentLog.LogMetadata.TOTAL_PRICE: usage.total_price,
AgentLog.LogMetadata.CURRENCY: usage.currency,
AgentLog.LogMetadata.TOTAL_TOKENS: usage.total_tokens,
AgentLog.LogMetadata.LLM_USAGE: usage,
}
)
return log
def _replace_file_references(self, tool_args: dict[str, Any]) -> dict[str, Any]:
"""
Replace file references in tool arguments with actual File objects.
Args:
tool_args: Dictionary of tool arguments
Returns:
Updated tool arguments with file references replaced
"""
# Process each argument in the dictionary
processed_args: dict[str, Any] = {}
for key, value in tool_args.items():
processed_args[key] = self._process_file_reference(value)
return processed_args
def _process_file_reference(self, data: Any) -> Any:
"""
Recursively process data to replace file references.
Supports both single file [File: file_id] and multiple files [Files: file_id1, file_id2, ...].
Args:
data: The data to process (can be dict, list, str, or other types)
Returns:
Processed data with file references replaced
"""
single_file_pattern = re.compile(r"^\[File:\s*([^\]]+)\]$")
multiple_files_pattern = re.compile(r"^\[Files:\s*([^\]]+)\]$")
if isinstance(data, dict):
# Process dictionary recursively
return {key: self._process_file_reference(value) for key, value in data.items()}
elif isinstance(data, list):
# Process list recursively
return [self._process_file_reference(item) for item in data]
elif isinstance(data, str):
# Check for single file pattern [File: file_id]
single_match = single_file_pattern.match(data.strip())
if single_match:
file_id = single_match.group(1).strip()
# Find the file in self.files
for file in self.files:
if file.id and str(file.id) == file_id:
return file
# If file not found, return original value
return data
# Check for multiple files pattern [Files: file_id1, file_id2, ...]
multiple_match = multiple_files_pattern.match(data.strip())
if multiple_match:
file_ids_str = multiple_match.group(1).strip()
# Split by comma and strip whitespace
file_ids = [fid.strip() for fid in file_ids_str.split(",")]
# Find all matching files
matched_files: list[File] = []
for file_id in file_ids:
for file in self.files:
if file.id and str(file.id) == file_id:
matched_files.append(file)
break
# Return list of files if any were found, otherwise return original
return matched_files or data
return data
else:
# Return other types as-is
return data
def _create_text_chunk(self, text: str, prompt_messages: list[PromptMessage]) -> LLMResultChunk:
"""Create a text chunk for streaming."""
return LLMResultChunk(
model=self.model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(content=text),
usage=None,
),
system_fingerprint="",
)
def _invoke_tool(
self,
tool_instance: Tool,
tool_args: dict[str, Any],
tool_name: str,
) -> tuple[str, list[File], ToolInvokeMeta | None]:
"""
Invoke a tool and collect its response.
Args:
tool_instance: The tool instance to invoke
tool_args: Tool arguments
tool_name: Name of the tool
Returns:
Tuple of (response_content, tool_files, tool_invoke_meta)
"""
# Process tool_args to replace file references with actual File objects
tool_args = self._replace_file_references(tool_args)
# If a tool invoke hook is set, use it instead of generic_invoke
if self.tool_invoke_hook:
response_content, _, tool_invoke_meta = self.tool_invoke_hook(tool_instance, tool_args, tool_name)
# Note: message_file_ids are stored in DB, we don't convert them to File objects here
# The caller (AgentAppRunner) handles file publishing
return response_content, [], tool_invoke_meta
# Default: use generic_invoke for workflow scenarios
# Import here to avoid circular import
from core.tools.tool_engine import DifyWorkflowCallbackHandler, ToolEngine
tool_response = ToolEngine().generic_invoke(
tool=tool_instance,
tool_parameters=tool_args,
user_id=self.context.user_id or "",
workflow_tool_callback=DifyWorkflowCallbackHandler(),
workflow_call_depth=self.workflow_call_depth,
app_id=self.context.app_id,
conversation_id=self.context.conversation_id,
message_id=self.context.message_id,
)
# Collect response and files
response_content = ""
tool_files: list[File] = []
for response in tool_response:
if response.type == ToolInvokeMessage.MessageType.TEXT:
assert isinstance(response.message, ToolInvokeMessage.TextMessage)
response_content += response.message.text
elif response.type == ToolInvokeMessage.MessageType.LINK:
# Handle link messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
response_content += f"[Link: {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.IMAGE:
# Handle image URL messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
response_content += f"[Image: {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK:
# Handle image link messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
response_content += f"[Image: {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.BINARY_LINK:
# Handle binary file link messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
filename = response.meta.get("filename", "file") if response.meta else "file"
response_content += f"[File: {filename} - {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.JSON:
# Handle JSON messages
if isinstance(response.message, ToolInvokeMessage.JsonMessage):
response_content += json.dumps(response.message.json_object, ensure_ascii=False, indent=2)
elif response.type == ToolInvokeMessage.MessageType.BLOB:
# Handle blob messages - convert to text representation
if isinstance(response.message, ToolInvokeMessage.BlobMessage):
mime_type = (
response.meta.get("mime_type", "application/octet-stream")
if response.meta
else "application/octet-stream"
)
size = len(response.message.blob)
response_content += f"[Binary data: {mime_type}, size: {size} bytes]"
elif response.type == ToolInvokeMessage.MessageType.VARIABLE:
# Handle variable messages
if isinstance(response.message, ToolInvokeMessage.VariableMessage):
var_name = response.message.variable_name
var_value = response.message.variable_value
if isinstance(var_value, str):
response_content += var_value
else:
response_content += f"[Variable {var_name}: {json.dumps(var_value, ensure_ascii=False)}]"
elif response.type == ToolInvokeMessage.MessageType.BLOB_CHUNK:
# Handle blob chunk messages - these are parts of a larger blob
if isinstance(response.message, ToolInvokeMessage.BlobChunkMessage):
response_content += f"[Blob chunk {response.message.sequence}: {len(response.message.blob)} bytes]"
elif response.type == ToolInvokeMessage.MessageType.RETRIEVER_RESOURCES:
# Handle retriever resources messages
if isinstance(response.message, ToolInvokeMessage.RetrieverResourceMessage):
response_content += response.message.context
elif response.type == ToolInvokeMessage.MessageType.FILE:
# Extract file from meta
if response.meta and "file" in response.meta:
file = response.meta["file"]
if isinstance(file, File):
# Check if file is for model or tool output
if response.meta.get("target") == "self":
# File is for model - add to files for next prompt
self.files.append(file)
response_content += f"File '{file.filename}' has been loaded into your context."
else:
# File is tool output
tool_files.append(file)
return response_content, tool_files, None
def _find_tool_by_name(self, tool_name: str) -> Tool | None:
"""Find a tool instance by its name."""
for tool in self.tools:
if tool.entity.identity.name == tool_name:
return tool
return None
def _convert_tools_to_prompt_format(self) -> list[PromptMessageTool]:
"""Convert tools to prompt message format."""
prompt_tools: list[PromptMessageTool] = []
for tool in self.tools:
prompt_tools.append(tool.to_prompt_message_tool())
return prompt_tools
def _update_usage_with_empty(self, llm_usage: dict[str, Any]) -> None:
"""Initialize usage tracking with empty usage if not set."""
if "usage" not in llm_usage or llm_usage["usage"] is None:
llm_usage["usage"] = LLMUsage.empty_usage()

View File

@ -0,0 +1,299 @@
"""Function Call strategy implementation."""
import json
from collections.abc import Generator
from typing import Any, Union
from core.agent.entities import AgentLog, AgentResult
from core.file import File
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
LLMUsage,
PromptMessage,
PromptMessageTool,
ToolPromptMessage,
)
from core.tools.entities.tool_entities import ToolInvokeMeta
from .base import AgentPattern
class FunctionCallStrategy(AgentPattern):
"""Function Call strategy using model's native tool calling capability."""
def run(
self,
prompt_messages: list[PromptMessage],
model_parameters: dict[str, Any],
stop: list[str] = [],
stream: bool = True,
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
"""Execute the function call agent strategy."""
# Convert tools to prompt format
prompt_tools: list[PromptMessageTool] = self._convert_tools_to_prompt_format()
# Initialize tracking
iteration_step: int = 1
max_iterations: int = self.max_iterations + 1
function_call_state: bool = True
total_usage: dict[str, LLMUsage | None] = {"usage": None}
messages: list[PromptMessage] = list(prompt_messages) # Create mutable copy
final_text: str = ""
finish_reason: str | None = None
output_files: list[File] = [] # Track files produced by tools
while function_call_state and iteration_step <= max_iterations:
function_call_state = False
round_log = self._create_log(
label=f"ROUND {iteration_step}",
log_type=AgentLog.LogType.ROUND,
status=AgentLog.LogStatus.START,
data={},
)
yield round_log
# On last iteration, remove tools to force final answer
current_tools: list[PromptMessageTool] = [] if iteration_step == max_iterations else prompt_tools
model_log = self._create_log(
label=f"{self.model_instance.model} Thought",
log_type=AgentLog.LogType.THOUGHT,
status=AgentLog.LogStatus.START,
data={},
parent_id=round_log.id,
extra_metadata={
AgentLog.LogMetadata.PROVIDER: self.model_instance.provider,
},
)
yield model_log
# Track usage for this round only
round_usage: dict[str, LLMUsage | None] = {"usage": None}
# Invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = self.model_instance.invoke_llm(
prompt_messages=messages,
model_parameters=model_parameters,
tools=current_tools,
stop=stop,
stream=stream,
user=self.context.user_id,
callbacks=[],
)
# Process response
tool_calls, response_content, chunk_finish_reason = yield from self._handle_chunks(
chunks, round_usage, model_log
)
messages.append(self._create_assistant_message(response_content, tool_calls))
# Accumulate to total usage
round_usage_value = round_usage.get("usage")
if round_usage_value:
self._accumulate_usage(total_usage, round_usage_value)
# Update final text if no tool calls (this is likely the final answer)
if not tool_calls:
final_text = response_content
# Update finish reason
if chunk_finish_reason:
finish_reason = chunk_finish_reason
# Process tool calls
tool_outputs: dict[str, str] = {}
if tool_calls:
function_call_state = True
# Execute tools
for tool_call_id, tool_name, tool_args in tool_calls:
tool_response, tool_files, _ = yield from self._handle_tool_call(
tool_name, tool_args, tool_call_id, messages, round_log
)
tool_outputs[tool_name] = tool_response
# Track files produced by tools
output_files.extend(tool_files)
yield self._finish_log(
round_log,
data={
"llm_result": response_content,
"tool_calls": [
{"name": tc[1], "args": tc[2], "output": tool_outputs.get(tc[1], "")} for tc in tool_calls
]
if tool_calls
else [],
"final_answer": final_text if not function_call_state else None,
},
usage=round_usage.get("usage"),
)
iteration_step += 1
# Return final result
from core.agent.entities import AgentResult
return AgentResult(
text=final_text,
files=output_files,
usage=total_usage.get("usage") or LLMUsage.empty_usage(),
finish_reason=finish_reason,
)
def _handle_chunks(
self,
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult],
llm_usage: dict[str, LLMUsage | None],
start_log: AgentLog,
) -> Generator[
LLMResultChunk | AgentLog,
None,
tuple[list[tuple[str, str, dict[str, Any]]], str, str | None],
]:
"""Handle LLM response chunks and extract tool calls and content.
Returns a tuple of (tool_calls, response_content, finish_reason).
"""
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
response_content: str = ""
finish_reason: str | None = None
if isinstance(chunks, Generator):
# Streaming response
for chunk in chunks:
# Extract tool calls
if self._has_tool_calls(chunk):
tool_calls.extend(self._extract_tool_calls(chunk))
# Extract content
if chunk.delta.message and chunk.delta.message.content:
response_content += self._extract_content(chunk.delta.message.content)
# Track usage
if chunk.delta.usage:
self._accumulate_usage(llm_usage, chunk.delta.usage)
# Capture finish reason
if chunk.delta.finish_reason:
finish_reason = chunk.delta.finish_reason
yield chunk
else:
# Non-streaming response
result: LLMResult = chunks
if self._has_tool_calls_result(result):
tool_calls.extend(self._extract_tool_calls_result(result))
if result.message and result.message.content:
response_content += self._extract_content(result.message.content)
if result.usage:
self._accumulate_usage(llm_usage, result.usage)
# Convert to streaming format
yield LLMResultChunk(
model=result.model,
prompt_messages=result.prompt_messages,
delta=LLMResultChunkDelta(index=0, message=result.message, usage=result.usage),
)
yield self._finish_log(
start_log,
data={
"result": response_content,
},
usage=llm_usage.get("usage"),
)
return tool_calls, response_content, finish_reason
def _create_assistant_message(
self, content: str, tool_calls: list[tuple[str, str, dict[str, Any]]] | None = None
) -> AssistantPromptMessage:
"""Create assistant message with tool calls."""
if tool_calls is None:
return AssistantPromptMessage(content=content)
return AssistantPromptMessage(
content=content or "",
tool_calls=[
AssistantPromptMessage.ToolCall(
id=tc[0],
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name=tc[1], arguments=json.dumps(tc[2])),
)
for tc in tool_calls
],
)
def _handle_tool_call(
self,
tool_name: str,
tool_args: dict[str, Any],
tool_call_id: str,
messages: list[PromptMessage],
round_log: AgentLog,
) -> Generator[AgentLog, None, tuple[str, list[File], ToolInvokeMeta | None]]:
"""Handle a single tool call and return response with files and meta."""
# Find tool
tool_instance = self._find_tool_by_name(tool_name)
if not tool_instance:
raise ValueError(f"Tool {tool_name} not found")
# Get tool metadata (provider, icon, etc.)
tool_metadata = self._get_tool_metadata(tool_instance)
# Create tool call log
tool_call_log = self._create_log(
label=f"CALL {tool_name}",
log_type=AgentLog.LogType.TOOL_CALL,
status=AgentLog.LogStatus.START,
data={
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"tool_args": tool_args,
},
parent_id=round_log.id,
extra_metadata=tool_metadata,
)
yield tool_call_log
# Invoke tool using base class method with error handling
try:
response_content, tool_files, tool_invoke_meta = self._invoke_tool(tool_instance, tool_args, tool_name)
yield self._finish_log(
tool_call_log,
data={
**tool_call_log.data,
"output": response_content,
"files": len(tool_files),
"meta": tool_invoke_meta.to_dict() if tool_invoke_meta else None,
},
)
final_content = response_content or "Tool executed successfully"
# Add tool response to messages
messages.append(
ToolPromptMessage(
content=final_content,
tool_call_id=tool_call_id,
name=tool_name,
)
)
return response_content, tool_files, tool_invoke_meta
except Exception as e:
# Tool invocation failed, yield error log
error_message = str(e)
tool_call_log.status = AgentLog.LogStatus.ERROR
tool_call_log.error = error_message
tool_call_log.data = {
**tool_call_log.data,
"error": error_message,
}
yield tool_call_log
# Add error message to conversation
error_content = f"Tool execution failed: {error_message}"
messages.append(
ToolPromptMessage(
content=error_content,
tool_call_id=tool_call_id,
name=tool_name,
)
)
return error_content, [], None

View File

@ -0,0 +1,418 @@
"""ReAct strategy implementation."""
from __future__ import annotations
import json
from collections.abc import Generator
from typing import TYPE_CHECKING, Any, Union
from core.agent.entities import AgentLog, AgentResult, AgentScratchpadUnit, ExecutionContext
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
from core.file import File
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
PromptMessage,
SystemPromptMessage,
)
from .base import AgentPattern, ToolInvokeHook
if TYPE_CHECKING:
from core.tools.__base.tool import Tool
class ReActStrategy(AgentPattern):
"""ReAct strategy using reasoning and acting approach."""
def __init__(
self,
model_instance: ModelInstance,
tools: list[Tool],
context: ExecutionContext,
max_iterations: int = 10,
workflow_call_depth: int = 0,
files: list[File] = [],
tool_invoke_hook: ToolInvokeHook | None = None,
instruction: str = "",
):
"""Initialize the ReAct strategy with instruction support."""
super().__init__(
model_instance=model_instance,
tools=tools,
context=context,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
files=files,
tool_invoke_hook=tool_invoke_hook,
)
self.instruction = instruction
def run(
self,
prompt_messages: list[PromptMessage],
model_parameters: dict[str, Any],
stop: list[str] = [],
stream: bool = True,
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
"""Execute the ReAct agent strategy."""
# Initialize tracking
agent_scratchpad: list[AgentScratchpadUnit] = []
iteration_step: int = 1
max_iterations: int = self.max_iterations + 1
react_state: bool = True
total_usage: dict[str, Any] = {"usage": None}
output_files: list[File] = [] # Track files produced by tools
final_text: str = ""
finish_reason: str | None = None
# Add "Observation" to stop sequences
if "Observation" not in stop:
stop = stop.copy()
stop.append("Observation")
while react_state and iteration_step <= max_iterations:
react_state = False
round_log = self._create_log(
label=f"ROUND {iteration_step}",
log_type=AgentLog.LogType.ROUND,
status=AgentLog.LogStatus.START,
data={},
)
yield round_log
# Build prompt with/without tools based on iteration
include_tools = iteration_step < max_iterations
current_messages = self._build_prompt_with_react_format(
prompt_messages, agent_scratchpad, include_tools, self.instruction
)
model_log = self._create_log(
label=f"{self.model_instance.model} Thought",
log_type=AgentLog.LogType.THOUGHT,
status=AgentLog.LogStatus.START,
data={},
parent_id=round_log.id,
extra_metadata={
AgentLog.LogMetadata.PROVIDER: self.model_instance.provider,
},
)
yield model_log
# Track usage for this round only
round_usage: dict[str, Any] = {"usage": None}
# Use current messages directly (files are handled by base class if needed)
messages_to_use = current_messages
# Invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = self.model_instance.invoke_llm(
prompt_messages=messages_to_use,
model_parameters=model_parameters,
stop=stop,
stream=stream,
user=self.context.user_id or "",
callbacks=[],
)
# Process response
scratchpad, chunk_finish_reason = yield from self._handle_chunks(
chunks, round_usage, model_log, current_messages
)
agent_scratchpad.append(scratchpad)
# Accumulate to total usage
round_usage_value = round_usage.get("usage")
if round_usage_value:
self._accumulate_usage(total_usage, round_usage_value)
# Update finish reason
if chunk_finish_reason:
finish_reason = chunk_finish_reason
# Check if we have an action to execute
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
react_state = True
# Execute tool
observation, tool_files = yield from self._handle_tool_call(
scratchpad.action, current_messages, round_log
)
scratchpad.observation = observation
# Track files produced by tools
output_files.extend(tool_files)
# Add observation to scratchpad for display
yield self._create_text_chunk(f"\nObservation: {observation}\n", current_messages)
else:
# Extract final answer
if scratchpad.action and scratchpad.action.action_input:
final_answer = scratchpad.action.action_input
if isinstance(final_answer, dict):
final_answer = json.dumps(final_answer, ensure_ascii=False)
final_text = str(final_answer)
elif scratchpad.thought:
# If no action but we have thought, use thought as final answer
final_text = scratchpad.thought
yield self._finish_log(
round_log,
data={
"thought": scratchpad.thought,
"action": scratchpad.action_str if scratchpad.action else None,
"observation": scratchpad.observation or None,
"final_answer": final_text if not react_state else None,
},
usage=round_usage.get("usage"),
)
iteration_step += 1
# Return final result
from core.agent.entities import AgentResult
return AgentResult(
text=final_text, files=output_files, usage=total_usage.get("usage"), finish_reason=finish_reason
)
def _build_prompt_with_react_format(
self,
original_messages: list[PromptMessage],
agent_scratchpad: list[AgentScratchpadUnit],
include_tools: bool = True,
instruction: str = "",
) -> list[PromptMessage]:
"""Build prompt messages with ReAct format."""
# Copy messages to avoid modifying original
messages = list(original_messages)
# Find and update the system prompt that should already exist
system_prompt_found = False
for i, msg in enumerate(messages):
if isinstance(msg, SystemPromptMessage):
system_prompt_found = True
# The system prompt from frontend already has the template, just replace placeholders
# Format tools
tools_str = ""
tool_names = []
if include_tools and self.tools:
# Convert tools to prompt message tools format
prompt_tools = [tool.to_prompt_message_tool() for tool in self.tools]
tool_names = [tool.name for tool in prompt_tools]
# Format tools as JSON for comprehensive information
from core.model_runtime.utils.encoders import jsonable_encoder
tools_str = json.dumps(jsonable_encoder(prompt_tools), indent=2)
tool_names_str = ", ".join(f'"{name}"' for name in tool_names)
else:
tools_str = "No tools available"
tool_names_str = ""
# Replace placeholders in the existing system prompt
updated_content = msg.content
assert isinstance(updated_content, str)
updated_content = updated_content.replace("{{instruction}}", instruction)
updated_content = updated_content.replace("{{tools}}", tools_str)
updated_content = updated_content.replace("{{tool_names}}", tool_names_str)
# Create new SystemPromptMessage with updated content
messages[i] = SystemPromptMessage(content=updated_content)
break
# If no system prompt found, that's unexpected but add scratchpad anyway
if not system_prompt_found:
# This shouldn't happen if frontend is working correctly
pass
# Format agent scratchpad
scratchpad_str = ""
if agent_scratchpad:
scratchpad_parts: list[str] = []
for unit in agent_scratchpad:
if unit.thought:
scratchpad_parts.append(f"Thought: {unit.thought}")
if unit.action_str:
scratchpad_parts.append(f"Action:\n```\n{unit.action_str}\n```")
if unit.observation:
scratchpad_parts.append(f"Observation: {unit.observation}")
scratchpad_str = "\n".join(scratchpad_parts)
# If there's a scratchpad, append it to the last message
if scratchpad_str:
messages.append(AssistantPromptMessage(content=scratchpad_str))
return messages
def _handle_chunks(
self,
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult],
llm_usage: dict[str, Any],
model_log: AgentLog,
current_messages: list[PromptMessage],
) -> Generator[
LLMResultChunk | AgentLog,
None,
tuple[AgentScratchpadUnit, str | None],
]:
"""Handle LLM response chunks and extract action/thought.
Returns a tuple of (scratchpad_unit, finish_reason).
"""
usage_dict: dict[str, Any] = {}
# Convert non-streaming to streaming format if needed
if isinstance(chunks, LLMResult):
# Create a generator from the LLMResult
def result_to_chunks() -> Generator[LLMResultChunk, None, None]:
yield LLMResultChunk(
model=chunks.model,
prompt_messages=chunks.prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=chunks.message,
usage=chunks.usage,
finish_reason=None, # LLMResult doesn't have finish_reason, only streaming chunks do
),
system_fingerprint=chunks.system_fingerprint or "",
)
streaming_chunks = result_to_chunks()
else:
streaming_chunks = chunks
react_chunks = CotAgentOutputParser.handle_react_stream_output(streaming_chunks, usage_dict)
# Initialize scratchpad unit
scratchpad = AgentScratchpadUnit(
agent_response="",
thought="",
action_str="",
observation="",
action=None,
)
finish_reason: str | None = None
# Process chunks
for chunk in react_chunks:
if isinstance(chunk, AgentScratchpadUnit.Action):
# Action detected
action_str = json.dumps(chunk.model_dump())
scratchpad.agent_response = (scratchpad.agent_response or "") + action_str
scratchpad.action_str = action_str
scratchpad.action = chunk
yield self._create_text_chunk(json.dumps(chunk.model_dump()), current_messages)
else:
# Text chunk
chunk_text = str(chunk)
scratchpad.agent_response = (scratchpad.agent_response or "") + chunk_text
scratchpad.thought = (scratchpad.thought or "") + chunk_text
yield self._create_text_chunk(chunk_text, current_messages)
# Update usage
if usage_dict.get("usage"):
if llm_usage.get("usage"):
self._accumulate_usage(llm_usage, usage_dict["usage"])
else:
llm_usage["usage"] = usage_dict["usage"]
# Clean up thought
scratchpad.thought = (scratchpad.thought or "").strip() or "I am thinking about how to help you"
# Finish model log
yield self._finish_log(
model_log,
data={
"thought": scratchpad.thought,
"action": scratchpad.action_str if scratchpad.action else None,
},
usage=llm_usage.get("usage"),
)
return scratchpad, finish_reason
def _handle_tool_call(
self,
action: AgentScratchpadUnit.Action,
prompt_messages: list[PromptMessage],
round_log: AgentLog,
) -> Generator[AgentLog, None, tuple[str, list[File]]]:
"""Handle tool call and return observation with files."""
tool_name = action.action_name
tool_args: dict[str, Any] | str = action.action_input
# Find tool instance first to get metadata
tool_instance = self._find_tool_by_name(tool_name)
tool_metadata = self._get_tool_metadata(tool_instance) if tool_instance else {}
# Start tool log with tool metadata
tool_log = self._create_log(
label=f"CALL {tool_name}",
log_type=AgentLog.LogType.TOOL_CALL,
status=AgentLog.LogStatus.START,
data={
"tool_name": tool_name,
"tool_args": tool_args,
},
parent_id=round_log.id,
extra_metadata=tool_metadata,
)
yield tool_log
if not tool_instance:
# Finish tool log with error
yield self._finish_log(
tool_log,
data={
**tool_log.data,
"error": f"Tool {tool_name} not found",
},
)
return f"Tool {tool_name} not found", []
# Ensure tool_args is a dict
tool_args_dict: dict[str, Any]
if isinstance(tool_args, str):
try:
tool_args_dict = json.loads(tool_args)
except json.JSONDecodeError:
tool_args_dict = {"input": tool_args}
elif not isinstance(tool_args, dict):
tool_args_dict = {"input": str(tool_args)}
else:
tool_args_dict = tool_args
# Invoke tool using base class method with error handling
try:
response_content, tool_files, tool_invoke_meta = self._invoke_tool(tool_instance, tool_args_dict, tool_name)
# Finish tool log
yield self._finish_log(
tool_log,
data={
**tool_log.data,
"output": response_content,
"files": len(tool_files),
"meta": tool_invoke_meta.to_dict() if tool_invoke_meta else None,
},
)
return response_content or "Tool executed successfully", tool_files
except Exception as e:
# Tool invocation failed, yield error log
error_message = str(e)
tool_log.status = AgentLog.LogStatus.ERROR
tool_log.error = error_message
tool_log.data = {
**tool_log.data,
"error": error_message,
}
yield tool_log
return f"Tool execution failed: {error_message}", []

View File

@ -0,0 +1,107 @@
"""Strategy factory for creating agent strategies."""
from __future__ import annotations
from typing import TYPE_CHECKING
from core.agent.entities import AgentEntity, ExecutionContext
from core.file.models import File
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelFeature
from .base import AgentPattern, ToolInvokeHook
from .function_call import FunctionCallStrategy
from .react import ReActStrategy
if TYPE_CHECKING:
from core.tools.__base.tool import Tool
class StrategyFactory:
"""Factory for creating agent strategies based on model features."""
# Tool calling related features
TOOL_CALL_FEATURES = {ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL}
@staticmethod
def create_strategy(
model_features: list[ModelFeature],
model_instance: ModelInstance,
context: ExecutionContext,
tools: list[Tool],
files: list[File],
max_iterations: int = 10,
workflow_call_depth: int = 0,
agent_strategy: AgentEntity.Strategy | None = None,
tool_invoke_hook: ToolInvokeHook | None = None,
instruction: str = "",
) -> AgentPattern:
"""
Create an appropriate strategy based on model features.
Args:
model_features: List of model features/capabilities
model_instance: Model instance to use
context: Execution context containing trace/audit information
tools: Available tools
files: Available files
max_iterations: Maximum iterations for the strategy
workflow_call_depth: Depth of workflow calls
agent_strategy: Optional explicit strategy override
tool_invoke_hook: Optional hook for custom tool invocation (e.g., agent_invoke)
instruction: Optional instruction for ReAct strategy
Returns:
AgentStrategy instance
"""
# If explicit strategy is provided and it's Function Calling, try to use it if supported
if agent_strategy == AgentEntity.Strategy.FUNCTION_CALLING:
if set(model_features) & StrategyFactory.TOOL_CALL_FEATURES:
return FunctionCallStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
)
# Fallback to ReAct if FC is requested but not supported
# If explicit strategy is Chain of Thought (ReAct)
if agent_strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
return ReActStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
instruction=instruction,
)
# Default auto-selection logic
if set(model_features) & StrategyFactory.TOOL_CALL_FEATURES:
# Model supports native function calling
return FunctionCallStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
)
else:
# Use ReAct strategy for models without function calling
return ReActStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
instruction=instruction,
)

View File

@ -20,6 +20,8 @@ from core.app.entities.queue_entities import (
QueueTextChunkEvent,
)
from core.app.features.annotation_reply.annotation_reply import AnnotationReplyFeature
from core.app.layers.conversation_variable_persist_layer import ConversationVariablePersistenceLayer
from core.db.session_factory import session_factory
from core.moderation.base import ModerationError
from core.moderation.input_moderation import InputModeration
from core.variables.variables import VariableUnion
@ -40,6 +42,7 @@ from models import Workflow
from models.enums import UserFrom
from models.model import App, Conversation, Message, MessageAnnotation
from models.workflow import ConversationVariable
from services.conversation_variable_updater import ConversationVariableUpdater
logger = logging.getLogger(__name__)
@ -200,6 +203,10 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
)
workflow_entry.graph_engine.layer(persistence_layer)
conversation_variable_layer = ConversationVariablePersistenceLayer(
ConversationVariableUpdater(session_factory.get_session_maker())
)
workflow_entry.graph_engine.layer(conversation_variable_layer)
for layer in self._graph_engine_layers:
workflow_entry.graph_engine.layer(layer)

View File

@ -4,6 +4,7 @@ import re
import time
from collections.abc import Callable, Generator, Mapping
from contextlib import contextmanager
from dataclasses import dataclass, field
from threading import Thread
from typing import Any, Union
@ -19,6 +20,7 @@ from core.app.entities.app_invoke_entities import (
InvokeFrom,
)
from core.app.entities.queue_entities import (
ChunkType,
MessageQueueMessage,
QueueAdvancedChatMessageEndEvent,
QueueAgentLogEvent,
@ -70,13 +72,122 @@ from core.workflow.runtime import GraphRuntimeState
from core.workflow.system_variable import SystemVariable
from extensions.ext_database import db
from libs.datetime_utils import naive_utc_now
from models import Account, Conversation, EndUser, Message, MessageFile
from models import Account, Conversation, EndUser, LLMGenerationDetail, Message, MessageFile
from models.enums import CreatorUserRole
from models.workflow import Workflow
logger = logging.getLogger(__name__)
@dataclass
class StreamEventBuffer:
"""
Buffer for recording stream events in order to reconstruct the generation sequence.
Records the exact order of text chunks, thoughts, and tool calls as they stream.
"""
# Accumulated reasoning content (each thought block is a separate element)
reasoning_content: list[str] = field(default_factory=list)
# Current reasoning buffer (accumulates until we see a different event type)
_current_reasoning: str = ""
# Tool calls with their details
tool_calls: list[dict] = field(default_factory=list)
# Tool call ID to index mapping for updating results
_tool_call_id_map: dict[str, int] = field(default_factory=dict)
# Sequence of events in stream order
sequence: list[dict] = field(default_factory=list)
# Current position in answer text
_content_position: int = 0
# Track last event type to detect transitions
_last_event_type: str | None = None
def _flush_current_reasoning(self) -> None:
"""Flush accumulated reasoning to the list and add to sequence."""
if self._current_reasoning.strip():
self.reasoning_content.append(self._current_reasoning.strip())
self.sequence.append({"type": "reasoning", "index": len(self.reasoning_content) - 1})
self._current_reasoning = ""
def record_text_chunk(self, text: str) -> None:
"""Record a text chunk event."""
if not text:
return
# Flush any pending reasoning first
if self._last_event_type == "thought":
self._flush_current_reasoning()
text_len = len(text)
start_pos = self._content_position
# If last event was also content, extend it; otherwise create new
if self.sequence and self.sequence[-1].get("type") == "content":
self.sequence[-1]["end"] = start_pos + text_len
else:
self.sequence.append({"type": "content", "start": start_pos, "end": start_pos + text_len})
self._content_position += text_len
self._last_event_type = "content"
def record_thought_chunk(self, text: str) -> None:
"""Record a thought/reasoning chunk event."""
if not text:
return
# Accumulate thought content
self._current_reasoning += text
self._last_event_type = "thought"
def record_tool_call(self, tool_call_id: str, tool_name: str, tool_arguments: str) -> None:
"""Record a tool call event."""
if not tool_call_id:
return
# Flush any pending reasoning first
if self._last_event_type == "thought":
self._flush_current_reasoning()
# Check if this tool call already exists (we might get multiple chunks)
if tool_call_id in self._tool_call_id_map:
idx = self._tool_call_id_map[tool_call_id]
# Update arguments if provided
if tool_arguments:
self.tool_calls[idx]["arguments"] = tool_arguments
else:
# New tool call
tool_call = {
"id": tool_call_id or "",
"name": tool_name or "",
"arguments": tool_arguments or "",
"result": "",
"elapsed_time": None,
}
self.tool_calls.append(tool_call)
idx = len(self.tool_calls) - 1
self._tool_call_id_map[tool_call_id] = idx
self.sequence.append({"type": "tool_call", "index": idx})
self._last_event_type = "tool_call"
def record_tool_result(self, tool_call_id: str, result: str, tool_elapsed_time: float | None = None) -> None:
"""Record a tool result event (update existing tool call)."""
if not tool_call_id:
return
if tool_call_id in self._tool_call_id_map:
idx = self._tool_call_id_map[tool_call_id]
self.tool_calls[idx]["result"] = result
self.tool_calls[idx]["elapsed_time"] = tool_elapsed_time
def finalize(self) -> None:
"""Finalize the buffer, flushing any pending data."""
if self._last_event_type == "thought":
self._flush_current_reasoning()
def has_data(self) -> bool:
"""Check if there's any meaningful data recorded."""
return bool(self.reasoning_content or self.tool_calls or self.sequence)
class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
"""
AdvancedChatAppGenerateTaskPipeline is a class that generate stream output and state management for Application.
@ -144,6 +255,8 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
self._workflow_run_id: str = ""
self._draft_var_saver_factory = draft_var_saver_factory
self._graph_runtime_state: GraphRuntimeState | None = None
# Stream event buffer for recording generation sequence
self._stream_buffer = StreamEventBuffer()
self._seed_graph_runtime_state_from_queue_manager()
def process(self) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
@ -358,6 +471,25 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
if node_finish_resp:
yield node_finish_resp
# For ANSWER nodes, check if we need to send a message_replace event
# Only send if the final output differs from the accumulated task_state.answer
# This happens when variables were updated by variable_assigner during workflow execution
if event.node_type == NodeType.ANSWER and event.outputs:
final_answer = event.outputs.get("answer")
if final_answer is not None and final_answer != self._task_state.answer:
logger.info(
"ANSWER node final output '%s' differs from accumulated answer '%s', sending message_replace event",
final_answer,
self._task_state.answer,
)
# Update the task state answer
self._task_state.answer = str(final_answer)
# Send message_replace event to update the UI
yield self._message_cycle_manager.message_replace_to_stream_response(
answer=str(final_answer),
reason="variable_update",
)
def _handle_node_failed_events(
self,
event: Union[QueueNodeFailedEvent, QueueNodeExceptionEvent],
@ -383,7 +515,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle text chunk events."""
"""Handle text chunk events and record to stream buffer for sequence reconstruction."""
delta_text = event.text
if delta_text is None:
return
@ -405,9 +537,52 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
if tts_publisher and queue_message:
tts_publisher.publish(queue_message)
self._task_state.answer += delta_text
tool_call = event.tool_call
tool_result = event.tool_result
tool_payload = tool_call or tool_result
tool_call_id = tool_payload.id if tool_payload and tool_payload.id else ""
tool_name = tool_payload.name if tool_payload and tool_payload.name else ""
tool_arguments = tool_call.arguments if tool_call and tool_call.arguments else ""
tool_files = tool_result.files if tool_result else []
tool_elapsed_time = tool_result.elapsed_time if tool_result else None
tool_icon = tool_payload.icon if tool_payload else None
tool_icon_dark = tool_payload.icon_dark if tool_payload else None
# Record stream event based on chunk type
chunk_type = event.chunk_type or ChunkType.TEXT
match chunk_type:
case ChunkType.TEXT:
self._stream_buffer.record_text_chunk(delta_text)
self._task_state.answer += delta_text
case ChunkType.THOUGHT:
# Reasoning should not be part of final answer text
self._stream_buffer.record_thought_chunk(delta_text)
case ChunkType.TOOL_CALL:
self._stream_buffer.record_tool_call(
tool_call_id=tool_call_id,
tool_name=tool_name,
tool_arguments=tool_arguments,
)
case ChunkType.TOOL_RESULT:
self._stream_buffer.record_tool_result(
tool_call_id=tool_call_id,
result=delta_text,
tool_elapsed_time=tool_elapsed_time,
)
self._task_state.answer += delta_text
case _:
pass
yield self._message_cycle_manager.message_to_stream_response(
answer=delta_text, message_id=self._message_id, from_variable_selector=event.from_variable_selector
answer=delta_text,
message_id=self._message_id,
from_variable_selector=event.from_variable_selector,
chunk_type=event.chunk_type.value if event.chunk_type else None,
tool_call_id=tool_call_id or None,
tool_name=tool_name or None,
tool_arguments=tool_arguments or None,
tool_files=tool_files,
tool_elapsed_time=tool_elapsed_time,
tool_icon=tool_icon,
tool_icon_dark=tool_icon_dark,
)
def _handle_iteration_start_event(
@ -775,6 +950,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
# If there are assistant files, remove markdown image links from answer
answer_text = self._task_state.answer
answer_text = self._strip_think_blocks(answer_text)
if self._recorded_files:
# Remove markdown image links since we're storing files separately
answer_text = re.sub(r"!\[.*?\]\(.*?\)", "", answer_text).strip()
@ -826,6 +1002,54 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
]
session.add_all(message_files)
# Save generation detail (reasoning/tool calls/sequence) from stream buffer
self._save_generation_detail(session=session, message=message)
@staticmethod
def _strip_think_blocks(text: str) -> str:
"""Remove <think>...</think> blocks (including their content) from text."""
if not text or "<think" not in text.lower():
return text
clean_text = re.sub(r"<think[^>]*>.*?</think>", "", text, flags=re.IGNORECASE | re.DOTALL)
clean_text = re.sub(r"\n\s*\n", "\n\n", clean_text).strip()
return clean_text
def _save_generation_detail(self, *, session: Session, message: Message) -> None:
"""
Save LLM generation detail for Chatflow using stream event buffer.
The buffer records the exact order of events as they streamed,
allowing accurate reconstruction of the generation sequence.
"""
# Finalize the stream buffer to flush any pending data
self._stream_buffer.finalize()
# Only save if there's meaningful data
if not self._stream_buffer.has_data():
return
reasoning_content = self._stream_buffer.reasoning_content
tool_calls = self._stream_buffer.tool_calls
sequence = self._stream_buffer.sequence
# Check if generation detail already exists for this message
existing = session.query(LLMGenerationDetail).filter_by(message_id=message.id).first()
if existing:
existing.reasoning_content = json.dumps(reasoning_content) if reasoning_content else None
existing.tool_calls = json.dumps(tool_calls) if tool_calls else None
existing.sequence = json.dumps(sequence) if sequence else None
else:
generation_detail = LLMGenerationDetail(
tenant_id=self._application_generate_entity.app_config.tenant_id,
app_id=self._application_generate_entity.app_config.app_id,
message_id=message.id,
reasoning_content=json.dumps(reasoning_content) if reasoning_content else None,
tool_calls=json.dumps(tool_calls) if tool_calls else None,
sequence=json.dumps(sequence) if sequence else None,
)
session.add(generation_detail)
def _seed_graph_runtime_state_from_queue_manager(self) -> None:
"""Bootstrap the cached runtime state from the queue manager when present."""
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state

View File

@ -3,10 +3,8 @@ from typing import cast
from sqlalchemy import select
from core.agent.cot_chat_agent_runner import CotChatAgentRunner
from core.agent.cot_completion_agent_runner import CotCompletionAgentRunner
from core.agent.agent_app_runner import AgentAppRunner
from core.agent.entities import AgentEntity
from core.agent.fc_agent_runner import FunctionCallAgentRunner
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.base_app_runner import AppRunner
@ -14,8 +12,7 @@ from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMMode
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.moderation.base import ModerationError
from extensions.ext_database import db
@ -194,22 +191,7 @@ class AgentChatAppRunner(AppRunner):
raise ValueError("Message not found")
db.session.close()
runner_cls: type[FunctionCallAgentRunner] | type[CotChatAgentRunner] | type[CotCompletionAgentRunner]
# start agent runner
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
# check LLM mode
if model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT:
runner_cls = CotChatAgentRunner
elif model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.COMPLETION:
runner_cls = CotCompletionAgentRunner
else:
raise ValueError(f"Invalid LLM mode: {model_schema.model_properties.get(ModelPropertyKey.MODE)}")
elif agent_entity.strategy == AgentEntity.Strategy.FUNCTION_CALLING:
runner_cls = FunctionCallAgentRunner
else:
raise ValueError(f"Invalid agent strategy: {agent_entity.strategy}")
runner = runner_cls(
runner = AgentAppRunner(
tenant_id=app_config.tenant_id,
application_generate_entity=application_generate_entity,
conversation=conversation_result,

View File

@ -671,7 +671,7 @@ class WorkflowResponseConverter:
task_id=task_id,
data=AgentLogStreamResponse.Data(
node_execution_id=event.node_execution_id,
id=event.id,
message_id=event.id,
parent_id=event.parent_id,
label=event.label,
error=event.error,

View File

@ -130,7 +130,7 @@ class PipelineGenerator(BaseAppGenerator):
pipeline=pipeline, workflow=workflow, start_node_id=start_node_id
)
documents: list[Document] = []
if invoke_from == InvokeFrom.PUBLISHED and not is_retry and not args.get("original_document_id"):
if invoke_from == InvokeFrom.PUBLISHED_PIPELINE and not is_retry and not args.get("original_document_id"):
from services.dataset_service import DocumentService
for datasource_info in datasource_info_list:
@ -156,7 +156,7 @@ class PipelineGenerator(BaseAppGenerator):
for i, datasource_info in enumerate(datasource_info_list):
workflow_run_id = str(uuid.uuid4())
document_id = args.get("original_document_id") or None
if invoke_from == InvokeFrom.PUBLISHED and not is_retry:
if invoke_from == InvokeFrom.PUBLISHED_PIPELINE and not is_retry:
document_id = document_id or documents[i].id
document_pipeline_execution_log = DocumentPipelineExecutionLog(
document_id=document_id,

View File

@ -13,6 +13,7 @@ from core.app.apps.common.workflow_response_converter import WorkflowResponseCon
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
from core.app.entities.queue_entities import (
AppQueueEvent,
ChunkType,
MessageQueueMessage,
QueueAgentLogEvent,
QueueErrorEvent,
@ -483,11 +484,33 @@ class WorkflowAppGenerateTaskPipeline(GraphRuntimeStateSupport):
if delta_text is None:
return
tool_call = event.tool_call
tool_result = event.tool_result
tool_payload = tool_call or tool_result
tool_call_id = tool_payload.id if tool_payload and tool_payload.id else None
tool_name = tool_payload.name if tool_payload and tool_payload.name else None
tool_arguments = tool_call.arguments if tool_call else None
tool_elapsed_time = tool_result.elapsed_time if tool_result else None
tool_files = tool_result.files if tool_result else []
tool_icon = tool_payload.icon if tool_payload else None
tool_icon_dark = tool_payload.icon_dark if tool_payload else None
# only publish tts message at text chunk streaming
if tts_publisher and queue_message:
tts_publisher.publish(queue_message)
yield self._text_chunk_to_stream_response(delta_text, from_variable_selector=event.from_variable_selector)
yield self._text_chunk_to_stream_response(
text=delta_text,
from_variable_selector=event.from_variable_selector,
chunk_type=event.chunk_type,
tool_call_id=tool_call_id,
tool_name=tool_name,
tool_arguments=tool_arguments,
tool_files=tool_files,
tool_elapsed_time=tool_elapsed_time,
tool_icon=tool_icon,
tool_icon_dark=tool_icon_dark,
)
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle agent log events."""
@ -650,16 +673,61 @@ class WorkflowAppGenerateTaskPipeline(GraphRuntimeStateSupport):
session.add(workflow_app_log)
def _text_chunk_to_stream_response(
self, text: str, from_variable_selector: list[str] | None = None
self,
text: str,
from_variable_selector: list[str] | None = None,
chunk_type: ChunkType | None = None,
tool_call_id: str | None = None,
tool_name: str | None = None,
tool_arguments: str | None = None,
tool_files: list[str] | None = None,
tool_error: str | None = None,
tool_elapsed_time: float | None = None,
tool_icon: str | dict | None = None,
tool_icon_dark: str | dict | None = None,
) -> TextChunkStreamResponse:
"""
Handle completed event.
:param text: text
:return:
"""
from core.app.entities.task_entities import ChunkType as ResponseChunkType
response_chunk_type = ResponseChunkType(chunk_type.value) if chunk_type else ResponseChunkType.TEXT
data = TextChunkStreamResponse.Data(
text=text,
from_variable_selector=from_variable_selector,
chunk_type=response_chunk_type,
)
if response_chunk_type == ResponseChunkType.TOOL_CALL:
data = data.model_copy(
update={
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"tool_arguments": tool_arguments,
"tool_icon": tool_icon,
"tool_icon_dark": tool_icon_dark,
}
)
elif response_chunk_type == ResponseChunkType.TOOL_RESULT:
data = data.model_copy(
update={
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"tool_arguments": tool_arguments,
"tool_files": tool_files,
"tool_error": tool_error,
"tool_elapsed_time": tool_elapsed_time,
"tool_icon": tool_icon,
"tool_icon_dark": tool_icon_dark,
}
)
response = TextChunkStreamResponse(
task_id=self._application_generate_entity.task_id,
data=TextChunkStreamResponse.Data(text=text, from_variable_selector=from_variable_selector),
data=data,
)
return response

View File

@ -455,12 +455,20 @@ class WorkflowBasedAppRunner:
)
)
elif isinstance(event, NodeRunStreamChunkEvent):
from core.app.entities.queue_entities import ChunkType as QueueChunkType
if event.is_final and not event.chunk:
return
self._publish_event(
QueueTextChunkEvent(
text=event.chunk,
from_variable_selector=list(event.selector),
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
chunk_type=QueueChunkType(event.chunk_type.value),
tool_call=event.tool_call,
tool_result=event.tool_result,
)
)
elif isinstance(event, NodeRunRetrieverResourceEvent):

View File

@ -42,7 +42,8 @@ class InvokeFrom(StrEnum):
# DEBUGGER indicates that this invocation is from
# the workflow (or chatflow) edit page.
DEBUGGER = "debugger"
PUBLISHED = "published"
# PUBLISHED_PIPELINE indicates that this invocation runs a published RAG pipeline workflow.
PUBLISHED_PIPELINE = "published"
# VALIDATION indicates that this invocation is from validation.
VALIDATION = "validation"

View File

@ -0,0 +1,70 @@
"""
LLM Generation Detail entities.
Defines the structure for storing and transmitting LLM generation details
including reasoning content, tool calls, and their sequence.
"""
from typing import Literal
from pydantic import BaseModel, Field
class ContentSegment(BaseModel):
"""Represents a content segment in the generation sequence."""
type: Literal["content"] = "content"
start: int = Field(..., description="Start position in the text")
end: int = Field(..., description="End position in the text")
class ReasoningSegment(BaseModel):
"""Represents a reasoning segment in the generation sequence."""
type: Literal["reasoning"] = "reasoning"
index: int = Field(..., description="Index into reasoning_content array")
class ToolCallSegment(BaseModel):
"""Represents a tool call segment in the generation sequence."""
type: Literal["tool_call"] = "tool_call"
index: int = Field(..., description="Index into tool_calls array")
SequenceSegment = ContentSegment | ReasoningSegment | ToolCallSegment
class ToolCallDetail(BaseModel):
"""Represents a tool call with its arguments and result."""
id: str = Field(default="", description="Unique identifier for the tool call")
name: str = Field(..., description="Name of the tool")
arguments: str = Field(default="", description="JSON string of tool arguments")
result: str = Field(default="", description="Result from the tool execution")
elapsed_time: float | None = Field(default=None, description="Elapsed time in seconds")
class LLMGenerationDetailData(BaseModel):
"""
Domain model for LLM generation detail.
Contains the structured data for reasoning content, tool calls,
and their display sequence.
"""
reasoning_content: list[str] = Field(default_factory=list, description="List of reasoning segments")
tool_calls: list[ToolCallDetail] = Field(default_factory=list, description="List of tool call details")
sequence: list[SequenceSegment] = Field(default_factory=list, description="Display order of segments")
def is_empty(self) -> bool:
"""Check if there's any meaningful generation detail."""
return not self.reasoning_content and not self.tool_calls
def to_response_dict(self) -> dict:
"""Convert to dictionary for API response."""
return {
"reasoning_content": self.reasoning_content,
"tool_calls": [tc.model_dump() for tc in self.tool_calls],
"sequence": [seg.model_dump() for seg in self.sequence],
}

View File

@ -7,7 +7,7 @@ from pydantic import BaseModel, ConfigDict, Field
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
from core.workflow.entities import AgentNodeStrategyInit
from core.workflow.entities import AgentNodeStrategyInit, ToolCall, ToolResult
from core.workflow.enums import WorkflowNodeExecutionMetadataKey
from core.workflow.nodes import NodeType
@ -177,6 +177,17 @@ class QueueLoopCompletedEvent(AppQueueEvent):
error: str | None = None
class ChunkType(StrEnum):
"""Stream chunk type for LLM-related events."""
TEXT = "text" # Normal text streaming
TOOL_CALL = "tool_call" # Tool call arguments streaming
TOOL_RESULT = "tool_result" # Tool execution result
THOUGHT = "thought" # Agent thinking process (ReAct)
THOUGHT_START = "thought_start" # Agent thought start
THOUGHT_END = "thought_end" # Agent thought end
class QueueTextChunkEvent(AppQueueEvent):
"""
QueueTextChunkEvent entity
@ -191,6 +202,16 @@ class QueueTextChunkEvent(AppQueueEvent):
in_loop_id: str | None = None
"""loop id if node is in loop"""
# Extended fields for Agent/Tool streaming
chunk_type: ChunkType = ChunkType.TEXT
"""type of the chunk"""
# Tool streaming payloads
tool_call: ToolCall | None = None
"""structured tool call info"""
tool_result: ToolResult | None = None
"""structured tool result info"""
class QueueAgentMessageEvent(AppQueueEvent):
"""

View File

@ -113,6 +113,38 @@ class MessageStreamResponse(StreamResponse):
answer: str
from_variable_selector: list[str] | None = None
# Extended fields for Agent/Tool streaming (imported at runtime to avoid circular import)
chunk_type: str | None = None
"""type of the chunk: text, tool_call, tool_result, thought"""
# Tool call fields (when chunk_type == "tool_call")
tool_call_id: str | None = None
"""unique identifier for this tool call"""
tool_name: str | None = None
"""name of the tool being called"""
tool_arguments: str | None = None
"""accumulated tool arguments JSON"""
# Tool result fields (when chunk_type == "tool_result")
tool_files: list[str] | None = None
"""file IDs produced by tool"""
tool_error: str | None = None
"""error message if tool failed"""
tool_elapsed_time: float | None = None
"""elapsed time spent executing the tool"""
tool_icon: str | dict | None = None
"""icon of the tool"""
tool_icon_dark: str | dict | None = None
"""dark theme icon of the tool"""
def model_dump(self, *args, **kwargs) -> dict[str, object]:
kwargs.setdefault("exclude_none", True)
return super().model_dump(*args, **kwargs)
def model_dump_json(self, *args, **kwargs) -> str:
kwargs.setdefault("exclude_none", True)
return super().model_dump_json(*args, **kwargs)
class MessageAudioStreamResponse(StreamResponse):
"""
@ -582,6 +614,17 @@ class LoopNodeCompletedStreamResponse(StreamResponse):
data: Data
class ChunkType(StrEnum):
"""Stream chunk type for LLM-related events."""
TEXT = "text" # Normal text streaming
TOOL_CALL = "tool_call" # Tool call arguments streaming
TOOL_RESULT = "tool_result" # Tool execution result
THOUGHT = "thought" # Agent thinking process (ReAct)
THOUGHT_START = "thought_start" # Agent thought start
THOUGHT_END = "thought_end" # Agent thought end
class TextChunkStreamResponse(StreamResponse):
"""
TextChunkStreamResponse entity
@ -595,6 +638,36 @@ class TextChunkStreamResponse(StreamResponse):
text: str
from_variable_selector: list[str] | None = None
# Extended fields for Agent/Tool streaming
chunk_type: ChunkType = ChunkType.TEXT
"""type of the chunk"""
# Tool call fields (when chunk_type == TOOL_CALL)
tool_call_id: str | None = None
"""unique identifier for this tool call"""
tool_name: str | None = None
"""name of the tool being called"""
tool_arguments: str | None = None
"""accumulated tool arguments JSON"""
# Tool result fields (when chunk_type == TOOL_RESULT)
tool_files: list[str] | None = None
"""file IDs produced by tool"""
tool_error: str | None = None
"""error message if tool failed"""
# Tool elapsed time fields (when chunk_type == TOOL_RESULT)
tool_elapsed_time: float | None = None
"""elapsed time spent executing the tool"""
def model_dump(self, *args, **kwargs) -> dict[str, object]:
kwargs.setdefault("exclude_none", True)
return super().model_dump(*args, **kwargs)
def model_dump_json(self, *args, **kwargs) -> str:
kwargs.setdefault("exclude_none", True)
return super().model_dump_json(*args, **kwargs)
event: StreamEvent = StreamEvent.TEXT_CHUNK
data: Data
@ -743,7 +816,7 @@ class AgentLogStreamResponse(StreamResponse):
"""
node_execution_id: str
id: str
message_id: str
label: str
parent_id: str | None = None
error: str | None = None

View File

@ -0,0 +1,60 @@
import logging
from core.variables import Variable
from core.workflow.constants import CONVERSATION_VARIABLE_NODE_ID
from core.workflow.conversation_variable_updater import ConversationVariableUpdater
from core.workflow.enums import NodeType
from core.workflow.graph_engine.layers.base import GraphEngineLayer
from core.workflow.graph_events import GraphEngineEvent, NodeRunSucceededEvent
from core.workflow.nodes.variable_assigner.common import helpers as common_helpers
logger = logging.getLogger(__name__)
class ConversationVariablePersistenceLayer(GraphEngineLayer):
def __init__(self, conversation_variable_updater: ConversationVariableUpdater) -> None:
super().__init__()
self._conversation_variable_updater = conversation_variable_updater
def on_graph_start(self) -> None:
pass
def on_event(self, event: GraphEngineEvent) -> None:
if not isinstance(event, NodeRunSucceededEvent):
return
if event.node_type != NodeType.VARIABLE_ASSIGNER:
return
if self.graph_runtime_state is None:
return
updated_variables = common_helpers.get_updated_variables(event.node_run_result.process_data) or []
if not updated_variables:
return
conversation_id = self.graph_runtime_state.system_variable.conversation_id
if conversation_id is None:
return
updated_any = False
for item in updated_variables:
selector = item.selector
if len(selector) < 2:
logger.warning("Conversation variable selector invalid. selector=%s", selector)
continue
if selector[0] != CONVERSATION_VARIABLE_NODE_ID:
continue
variable = self.graph_runtime_state.variable_pool.get(selector)
if not isinstance(variable, Variable):
logger.warning(
"Conversation variable not found in variable pool. selector=%s",
selector,
)
continue
self._conversation_variable_updater.update(conversation_id=conversation_id, variable=variable)
updated_any = True
if updated_any:
self._conversation_variable_updater.flush()
def on_graph_end(self, error: Exception | None) -> None:
pass

View File

@ -1,4 +1,5 @@
import logging
import re
import time
from collections.abc import Generator
from threading import Thread
@ -58,7 +59,7 @@ from core.prompt.utils.prompt_template_parser import PromptTemplateParser
from events.message_event import message_was_created
from extensions.ext_database import db
from libs.datetime_utils import naive_utc_now
from models.model import AppMode, Conversation, Message, MessageAgentThought
from models.model import AppMode, Conversation, LLMGenerationDetail, Message, MessageAgentThought
logger = logging.getLogger(__name__)
@ -68,6 +69,8 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline):
EasyUIBasedGenerateTaskPipeline is a class that generate stream output and state management for Application.
"""
_THINK_PATTERN = re.compile(r"<think[^>]*>(.*?)</think>", re.IGNORECASE | re.DOTALL)
_task_state: EasyUITaskState
_application_generate_entity: Union[ChatAppGenerateEntity, CompletionAppGenerateEntity, AgentChatAppGenerateEntity]
@ -409,11 +412,136 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline):
)
)
# Save LLM generation detail if there's reasoning_content
self._save_generation_detail(session=session, message=message, llm_result=llm_result)
message_was_created.send(
message,
application_generate_entity=self._application_generate_entity,
)
def _save_generation_detail(self, *, session: Session, message: Message, llm_result: LLMResult) -> None:
"""
Save LLM generation detail for Completion/Chat/Agent-Chat applications.
For Agent-Chat, also merges MessageAgentThought records.
"""
import json
reasoning_list: list[str] = []
tool_calls_list: list[dict] = []
sequence: list[dict] = []
answer = message.answer or ""
# Check if this is Agent-Chat mode by looking for agent thoughts
agent_thoughts = (
session.query(MessageAgentThought)
.filter_by(message_id=message.id)
.order_by(MessageAgentThought.position.asc())
.all()
)
if agent_thoughts:
# Agent-Chat mode: merge MessageAgentThought records
content_pos = 0
cleaned_answer_parts: list[str] = []
for thought in agent_thoughts:
# Add thought/reasoning
if thought.thought:
reasoning_text = thought.thought
if "<think" in reasoning_text.lower():
clean_text, extracted_reasoning = self._split_reasoning_from_answer(reasoning_text)
if extracted_reasoning:
reasoning_text = extracted_reasoning
thought.thought = clean_text or extracted_reasoning
reasoning_list.append(reasoning_text)
sequence.append({"type": "reasoning", "index": len(reasoning_list) - 1})
# Add tool calls
if thought.tool:
tool_calls_list.append(
{
"name": thought.tool,
"arguments": thought.tool_input or "",
"result": thought.observation or "",
}
)
sequence.append({"type": "tool_call", "index": len(tool_calls_list) - 1})
# Add answer content if present
if thought.answer:
content_text = thought.answer
if "<think" in content_text.lower():
clean_answer, extracted_reasoning = self._split_reasoning_from_answer(content_text)
if extracted_reasoning:
reasoning_list.append(extracted_reasoning)
sequence.append({"type": "reasoning", "index": len(reasoning_list) - 1})
content_text = clean_answer
thought.answer = clean_answer or content_text
if content_text:
start = content_pos
end = content_pos + len(content_text)
sequence.append({"type": "content", "start": start, "end": end})
content_pos = end
cleaned_answer_parts.append(content_text)
if cleaned_answer_parts:
merged_answer = "".join(cleaned_answer_parts)
message.answer = merged_answer
llm_result.message.content = merged_answer
else:
# Completion/Chat mode: use reasoning_content from llm_result
reasoning_content = llm_result.reasoning_content
if not reasoning_content and answer:
# Extract reasoning from <think> blocks and clean the final answer
clean_answer, reasoning_content = self._split_reasoning_from_answer(answer)
if reasoning_content:
answer = clean_answer
llm_result.message.content = clean_answer
llm_result.reasoning_content = reasoning_content
message.answer = clean_answer
if reasoning_content:
reasoning_list = [reasoning_content]
# Content comes first, then reasoning
if answer:
sequence.append({"type": "content", "start": 0, "end": len(answer)})
sequence.append({"type": "reasoning", "index": 0})
# Only save if there's meaningful generation detail
if not reasoning_list and not tool_calls_list:
return
# Check if generation detail already exists
existing = session.query(LLMGenerationDetail).filter_by(message_id=message.id).first()
if existing:
existing.reasoning_content = json.dumps(reasoning_list) if reasoning_list else None
existing.tool_calls = json.dumps(tool_calls_list) if tool_calls_list else None
existing.sequence = json.dumps(sequence) if sequence else None
else:
generation_detail = LLMGenerationDetail(
tenant_id=self._application_generate_entity.app_config.tenant_id,
app_id=self._application_generate_entity.app_config.app_id,
message_id=message.id,
reasoning_content=json.dumps(reasoning_list) if reasoning_list else None,
tool_calls=json.dumps(tool_calls_list) if tool_calls_list else None,
sequence=json.dumps(sequence) if sequence else None,
)
session.add(generation_detail)
@classmethod
def _split_reasoning_from_answer(cls, text: str) -> tuple[str, str]:
"""
Extract reasoning segments from <think> blocks and return (clean_text, reasoning).
"""
matches = cls._THINK_PATTERN.findall(text)
reasoning_content = "\n".join(match.strip() for match in matches) if matches else ""
clean_text = cls._THINK_PATTERN.sub("", text)
clean_text = re.sub(r"\n\s*\n", "\n\n", clean_text).strip()
return clean_text, reasoning_content or ""
def _handle_stop(self, event: QueueStopEvent):
"""
Handle stop.

View File

@ -232,15 +232,31 @@ class MessageCycleManager:
answer: str,
message_id: str,
from_variable_selector: list[str] | None = None,
chunk_type: str | None = None,
tool_call_id: str | None = None,
tool_name: str | None = None,
tool_arguments: str | None = None,
tool_files: list[str] | None = None,
tool_error: str | None = None,
tool_elapsed_time: float | None = None,
tool_icon: str | dict | None = None,
tool_icon_dark: str | dict | None = None,
event_type: StreamEvent | None = None,
) -> MessageStreamResponse:
"""
Message to stream response.
:param answer: answer
:param message_id: message id
:param from_variable_selector: from variable selector
:param chunk_type: type of the chunk (text, function_call, tool_result, thought)
:param tool_call_id: unique identifier for this tool call
:param tool_name: name of the tool being called
:param tool_arguments: accumulated tool arguments JSON
:param tool_files: file IDs produced by tool
:param tool_error: error message if tool failed
:return:
"""
return MessageStreamResponse(
response = MessageStreamResponse(
task_id=self._application_generate_entity.task_id,
id=message_id,
answer=answer,
@ -248,6 +264,35 @@ class MessageCycleManager:
event=event_type or StreamEvent.MESSAGE,
)
if chunk_type:
response = response.model_copy(update={"chunk_type": chunk_type})
if chunk_type == "tool_call":
response = response.model_copy(
update={
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"tool_arguments": tool_arguments,
"tool_icon": tool_icon,
"tool_icon_dark": tool_icon_dark,
}
)
elif chunk_type == "tool_result":
response = response.model_copy(
update={
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"tool_arguments": tool_arguments,
"tool_files": tool_files,
"tool_error": tool_error,
"tool_elapsed_time": tool_elapsed_time,
"tool_icon": tool_icon,
"tool_icon_dark": tool_icon_dark,
}
)
return response
def message_replace_to_stream_response(self, answer: str, reason: str = "") -> MessageReplaceStreamResponse:
"""
Message replace to stream response.

View File

@ -5,7 +5,6 @@ from sqlalchemy import select
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.entities.queue_entities import QueueRetrieverResourcesEvent
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
from core.rag.index_processor.constant.index_type import IndexStructureType
from core.rag.models.document import Document
@ -90,6 +89,8 @@ class DatasetIndexToolCallbackHandler:
# TODO(-LAN-): Improve type check
def return_retriever_resource_info(self, resource: Sequence[RetrievalSourceMetadata]):
"""Handle return_retriever_resource_info."""
from core.app.entities.queue_entities import QueueRetrieverResourcesEvent
self._queue_manager.publish(
QueueRetrieverResourcesEvent(retriever_resources=resource), PublishFrom.APPLICATION_MANAGER
)

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from configs import dify_config
@ -30,7 +32,7 @@ class DatasourcePlugin(ABC):
"""
return DatasourceProviderType.LOCAL_FILE
def fork_datasource_runtime(self, runtime: DatasourceRuntime) -> "DatasourcePlugin":
def fork_datasource_runtime(self, runtime: DatasourceRuntime) -> DatasourcePlugin:
return self.__class__(
entity=self.entity.model_copy(),
runtime=runtime,

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import enum
from enum import StrEnum
from typing import Any
@ -31,7 +33,7 @@ class DatasourceProviderType(enum.StrEnum):
ONLINE_DRIVE = "online_drive"
@classmethod
def value_of(cls, value: str) -> "DatasourceProviderType":
def value_of(cls, value: str) -> DatasourceProviderType:
"""
Get value of given mode.
@ -81,7 +83,7 @@ class DatasourceParameter(PluginParameter):
typ: DatasourceParameterType,
required: bool,
options: list[str] | None = None,
) -> "DatasourceParameter":
) -> DatasourceParameter:
"""
get a simple datasource parameter
@ -187,14 +189,14 @@ class DatasourceInvokeMeta(BaseModel):
tool_config: dict | None = None
@classmethod
def empty(cls) -> "DatasourceInvokeMeta":
def empty(cls) -> DatasourceInvokeMeta:
"""
Get an empty instance of DatasourceInvokeMeta
"""
return cls(time_cost=0.0, error=None, tool_config={})
@classmethod
def error_instance(cls, error: str) -> "DatasourceInvokeMeta":
def error_instance(cls, error: str) -> DatasourceInvokeMeta:
"""
Get an instance of DatasourceInvokeMeta with error
"""

View File

@ -1,7 +1,7 @@
from sqlalchemy import Engine
from sqlalchemy.orm import Session, sessionmaker
_session_maker: sessionmaker | None = None
_session_maker: sessionmaker[Session] | None = None
def configure_session_factory(engine: Engine, expire_on_commit: bool = False):
@ -10,7 +10,7 @@ def configure_session_factory(engine: Engine, expire_on_commit: bool = False):
_session_maker = sessionmaker(bind=engine, expire_on_commit=expire_on_commit)
def get_session_maker() -> sessionmaker:
def get_session_maker() -> sessionmaker[Session]:
if _session_maker is None:
raise RuntimeError("Session factory not configured. Call configure_session_factory() first.")
return _session_maker
@ -27,7 +27,7 @@ class SessionFactory:
configure_session_factory(engine, expire_on_commit)
@staticmethod
def get_session_maker() -> sessionmaker:
def get_session_maker() -> sessionmaker[Session]:
return get_session_maker()
@staticmethod

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import json
from datetime import datetime
from enum import StrEnum
@ -75,7 +77,7 @@ class MCPProviderEntity(BaseModel):
updated_at: datetime
@classmethod
def from_db_model(cls, db_provider: "MCPToolProvider") -> "MCPProviderEntity":
def from_db_model(cls, db_provider: MCPToolProvider) -> MCPProviderEntity:
"""Create entity from database model with decryption"""
return cls(

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from enum import StrEnum, auto
from typing import Union
@ -178,7 +180,7 @@ class BasicProviderConfig(BaseModel):
TOOLS_SELECTOR = CommonParameterType.TOOLS_SELECTOR
@classmethod
def value_of(cls, value: str) -> "ProviderConfig.Type":
def value_of(cls, value: str) -> ProviderConfig.Type:
"""
Get value of given mode.

View File

@ -8,8 +8,9 @@ import urllib.parse
from configs import dify_config
def get_signed_file_url(upload_file_id: str, as_attachment=False) -> str:
url = f"{dify_config.FILES_URL}/files/{upload_file_id}/file-preview"
def get_signed_file_url(upload_file_id: str, as_attachment=False, for_external: bool = True) -> str:
base_url = dify_config.FILES_URL if for_external else (dify_config.INTERNAL_FILES_URL or dify_config.FILES_URL)
url = f"{base_url}/files/{upload_file_id}/file-preview"
timestamp = str(int(time.time()))
nonce = os.urandom(16).hex()

View File

@ -112,17 +112,17 @@ class File(BaseModel):
return text
def generate_url(self) -> str | None:
def generate_url(self, for_external: bool = True) -> str | None:
if self.transfer_method == FileTransferMethod.REMOTE_URL:
return self.remote_url
elif self.transfer_method == FileTransferMethod.LOCAL_FILE:
if self.related_id is None:
raise ValueError("Missing file related_id")
return helpers.get_signed_file_url(upload_file_id=self.related_id)
return helpers.get_signed_file_url(upload_file_id=self.related_id, for_external=for_external)
elif self.transfer_method in [FileTransferMethod.TOOL_FILE, FileTransferMethod.DATASOURCE_FILE]:
assert self.related_id is not None
assert self.extension is not None
return sign_tool_file(tool_file_id=self.related_id, extension=self.extension)
return sign_tool_file(tool_file_id=self.related_id, extension=self.extension, for_external=for_external)
return None
def to_plugin_parameter(self) -> dict[str, Any]:
@ -133,7 +133,7 @@ class File(BaseModel):
"extension": self.extension,
"size": self.size,
"type": self.type,
"url": self.generate_url(),
"url": self.generate_url(for_external=False),
}
@model_validator(mode="after")

View File

@ -76,7 +76,7 @@ class TemplateTransformer(ABC):
Post-process the result to convert scientific notation strings back to numbers
"""
def convert_scientific_notation(value):
def convert_scientific_notation(value: Any) -> Any:
if isinstance(value, str):
# Check if the string looks like scientific notation
if re.match(r"^-?\d+\.?\d*e[+-]\d+$", value, re.IGNORECASE):
@ -90,7 +90,7 @@ class TemplateTransformer(ABC):
return [convert_scientific_notation(v) for v in value]
return value
return convert_scientific_notation(result) # type: ignore[no-any-return]
return convert_scientific_notation(result)
@classmethod
@abstractmethod

View File

@ -68,13 +68,7 @@ class RequestResponder(Generic[ReceiveRequestT, SendResultT]):
request_id: RequestId,
request_meta: RequestParams.Meta | None,
request: ReceiveRequestT,
session: """BaseSession[
SendRequestT,
SendNotificationT,
SendResultT,
ReceiveRequestT,
ReceiveNotificationT
]""",
session: """BaseSession[SendRequestT, SendNotificationT, SendResultT, ReceiveRequestT, ReceiveNotificationT]""",
on_complete: Callable[["RequestResponder[ReceiveRequestT, SendResultT]"], Any],
):
self.request_id = request_id

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from abc import ABC
from collections.abc import Mapping, Sequence
from enum import StrEnum, auto
@ -17,7 +19,7 @@ class PromptMessageRole(StrEnum):
TOOL = auto()
@classmethod
def value_of(cls, value: str) -> "PromptMessageRole":
def value_of(cls, value: str) -> PromptMessageRole:
"""
Get value of given mode.

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from decimal import Decimal
from enum import StrEnum, auto
from typing import Any
@ -20,7 +22,7 @@ class ModelType(StrEnum):
TTS = auto()
@classmethod
def value_of(cls, origin_model_type: str) -> "ModelType":
def value_of(cls, origin_model_type: str) -> ModelType:
"""
Get model type from origin model type.
@ -103,7 +105,7 @@ class DefaultParameterName(StrEnum):
JSON_SCHEMA = auto()
@classmethod
def value_of(cls, value: Any) -> "DefaultParameterName":
def value_of(cls, value: Any) -> DefaultParameterName:
"""
Get parameter name from value.

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import hashlib
import logging
from collections.abc import Sequence
@ -38,7 +40,7 @@ class ModelProviderFactory:
plugin_providers = self.get_plugin_model_providers()
return [provider.declaration for provider in plugin_providers]
def get_plugin_model_providers(self) -> Sequence["PluginModelProviderEntity"]:
def get_plugin_model_providers(self) -> Sequence[PluginModelProviderEntity]:
"""
Get all plugin model providers
:return: list of plugin model providers
@ -76,7 +78,7 @@ class ModelProviderFactory:
plugin_model_provider_entity = self.get_plugin_model_provider(provider=provider)
return plugin_model_provider_entity.declaration
def get_plugin_model_provider(self, provider: str) -> "PluginModelProviderEntity":
def get_plugin_model_provider(self, provider: str) -> PluginModelProviderEntity:
"""
Get plugin model provider
:param provider: provider name

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import enum
from collections.abc import Mapping, Sequence
from datetime import datetime
@ -242,7 +244,7 @@ class CredentialType(enum.StrEnum):
return [item.value for item in cls]
@classmethod
def of(cls, credential_type: str) -> "CredentialType":
def of(cls, credential_type: str) -> CredentialType:
type_name = credential_type.lower()
if type_name in {"api-key", "api_key"}:
return cls.API_KEY

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import contextlib
import json
import logging
@ -6,7 +8,7 @@ import re
import threading
import time
import uuid
from typing import TYPE_CHECKING, Any, Optional
from typing import TYPE_CHECKING, Any
import clickzetta # type: ignore
from pydantic import BaseModel, model_validator
@ -76,7 +78,7 @@ class ClickzettaConnectionPool:
Manages connection reuse across ClickzettaVector instances.
"""
_instance: Optional["ClickzettaConnectionPool"] = None
_instance: ClickzettaConnectionPool | None = None
_lock = threading.Lock()
def __init__(self):
@ -89,7 +91,7 @@ class ClickzettaConnectionPool:
self._start_cleanup_thread()
@classmethod
def get_instance(cls) -> "ClickzettaConnectionPool":
def get_instance(cls) -> ClickzettaConnectionPool:
"""Get singleton instance of connection pool."""
if cls._instance is None:
with cls._lock:
@ -104,7 +106,7 @@ class ClickzettaConnectionPool:
f"{config.workspace}:{config.vcluster}:{config.schema_name}"
)
def _create_connection(self, config: ClickzettaConfig) -> "Connection":
def _create_connection(self, config: ClickzettaConfig) -> Connection:
"""Create a new ClickZetta connection."""
max_retries = 3
retry_delay = 1.0
@ -134,7 +136,7 @@ class ClickzettaConnectionPool:
raise RuntimeError(f"Failed to create ClickZetta connection after {max_retries} attempts")
def _configure_connection(self, connection: "Connection"):
def _configure_connection(self, connection: Connection):
"""Configure connection session settings."""
try:
with connection.cursor() as cursor:
@ -181,7 +183,7 @@ class ClickzettaConnectionPool:
except Exception:
logger.exception("Failed to configure connection, continuing with defaults")
def _is_connection_valid(self, connection: "Connection") -> bool:
def _is_connection_valid(self, connection: Connection) -> bool:
"""Check if connection is still valid."""
try:
with connection.cursor() as cursor:
@ -190,7 +192,7 @@ class ClickzettaConnectionPool:
except Exception:
return False
def get_connection(self, config: ClickzettaConfig) -> "Connection":
def get_connection(self, config: ClickzettaConfig) -> Connection:
"""Get a connection from the pool or create a new one."""
config_key = self._get_config_key(config)
@ -221,7 +223,7 @@ class ClickzettaConnectionPool:
# No valid connection found, create new one
return self._create_connection(config)
def return_connection(self, config: ClickzettaConfig, connection: "Connection"):
def return_connection(self, config: ClickzettaConfig, connection: Connection):
"""Return a connection to the pool."""
config_key = self._get_config_key(config)
@ -315,22 +317,22 @@ class ClickzettaVector(BaseVector):
self._connection_pool = ClickzettaConnectionPool.get_instance()
self._init_write_queue()
def _get_connection(self) -> "Connection":
def _get_connection(self) -> Connection:
"""Get a connection from the pool."""
return self._connection_pool.get_connection(self._config)
def _return_connection(self, connection: "Connection"):
def _return_connection(self, connection: Connection):
"""Return a connection to the pool."""
self._connection_pool.return_connection(self._config, connection)
class ConnectionContext:
"""Context manager for borrowing and returning connections."""
def __init__(self, vector_instance: "ClickzettaVector"):
def __init__(self, vector_instance: ClickzettaVector):
self.vector = vector_instance
self.connection: Connection | None = None
def __enter__(self) -> "Connection":
def __enter__(self) -> Connection:
self.connection = self.vector._get_connection()
return self.connection
@ -338,7 +340,7 @@ class ClickzettaVector(BaseVector):
if self.connection:
self.vector._return_connection(self.connection)
def get_connection_context(self) -> "ClickzettaVector.ConnectionContext":
def get_connection_context(self) -> ClickzettaVector.ConnectionContext:
"""Get a connection context manager."""
return self.ConnectionContext(self)
@ -437,7 +439,7 @@ class ClickzettaVector(BaseVector):
"""Return the vector database type."""
return "clickzetta"
def _ensure_connection(self) -> "Connection":
def _ensure_connection(self) -> Connection:
"""Get a connection from the pool."""
return self._get_connection()
@ -984,9 +986,11 @@ class ClickzettaVector(BaseVector):
# No need for dataset_id filter since each dataset has its own table
# Use simple quote escaping for LIKE clause
escaped_query = query.replace("'", "''")
filter_clauses.append(f"{Field.CONTENT_KEY} LIKE '%{escaped_query}%'")
# Escape special characters for LIKE clause to prevent SQL injection
from libs.helper import escape_like_pattern
escaped_query = escape_like_pattern(query).replace("'", "''")
filter_clauses.append(f"{Field.CONTENT_KEY} LIKE '%{escaped_query}%' ESCAPE '\\\\'")
where_clause = " AND ".join(filter_clauses)
search_sql = f"""

View File

@ -287,11 +287,15 @@ class IrisVector(BaseVector):
cursor.execute(sql, (query,))
else:
# Fallback to LIKE search (inefficient for large datasets)
query_pattern = f"%{query}%"
# Escape special characters for LIKE clause to prevent SQL injection
from libs.helper import escape_like_pattern
escaped_query = escape_like_pattern(query)
query_pattern = f"%{escaped_query}%"
sql = f"""
SELECT TOP {top_k} id, text, meta
FROM {self.schema}.{self.table_name}
WHERE text LIKE ?
WHERE text LIKE ? ESCAPE '\\'
"""
cursor.execute(sql, (query_pattern,))

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from collections.abc import Sequence
from typing import Any
@ -22,7 +24,7 @@ class DatasetDocumentStore:
self._document_id = document_id
@classmethod
def from_dict(cls, config_dict: dict[str, Any]) -> "DatasetDocumentStore":
def from_dict(cls, config_dict: dict[str, Any]) -> DatasetDocumentStore:
return cls(**config_dict)
def to_dict(self) -> dict[str, Any]:

View File

@ -7,10 +7,11 @@ import re
import tempfile
import uuid
from urllib.parse import urlparse
from xml.etree import ElementTree
import httpx
from docx import Document as DocxDocument
from docx.oxml.ns import qn
from docx.text.run import Run
from configs import dify_config
from core.helper import ssrf_proxy
@ -229,44 +230,20 @@ class WordExtractor(BaseExtractor):
image_map = self._extract_images_from_docx(doc)
hyperlinks_url = None
url_pattern = re.compile(r"http://[^\s+]+//|https://[^\s+]+")
for para in doc.paragraphs:
for run in para.runs:
if run.text and hyperlinks_url:
result = f" [{run.text}]({hyperlinks_url}) "
run.text = result
hyperlinks_url = None
if "HYPERLINK" in run.element.xml:
try:
xml = ElementTree.XML(run.element.xml)
x_child = [c for c in xml.iter() if c is not None]
for x in x_child:
if x is None:
continue
if x.tag.endswith("instrText"):
if x.text is None:
continue
for i in url_pattern.findall(x.text):
hyperlinks_url = str(i)
except Exception:
logger.exception("Failed to parse HYPERLINK xml")
def parse_paragraph(paragraph):
paragraph_content = []
def append_image_link(image_id, has_drawing):
def append_image_link(image_id, has_drawing, target_buffer):
"""Helper to append image link from image_map based on relationship type."""
rel = doc.part.rels[image_id]
if rel.is_external:
if image_id in image_map and not has_drawing:
paragraph_content.append(image_map[image_id])
target_buffer.append(image_map[image_id])
else:
image_part = rel.target_part
if image_part in image_map and not has_drawing:
paragraph_content.append(image_map[image_part])
target_buffer.append(image_map[image_part])
for run in paragraph.runs:
def process_run(run, target_buffer):
# Helper to extract text and embedded images from a run element and append them to target_buffer
if hasattr(run.element, "tag") and isinstance(run.element.tag, str) and run.element.tag.endswith("r"):
# Process drawing type images
drawing_elements = run.element.findall(
@ -287,13 +264,13 @@ class WordExtractor(BaseExtractor):
# External image: use embed_id as key
if embed_id in image_map:
has_drawing = True
paragraph_content.append(image_map[embed_id])
target_buffer.append(image_map[embed_id])
else:
# Internal image: use target_part as key
image_part = doc.part.related_parts.get(embed_id)
if image_part in image_map:
has_drawing = True
paragraph_content.append(image_map[image_part])
target_buffer.append(image_map[image_part])
# Process pict type images
shape_elements = run.element.findall(
".//{http://schemas.openxmlformats.org/wordprocessingml/2006/main}pict"
@ -308,7 +285,7 @@ class WordExtractor(BaseExtractor):
"{http://schemas.openxmlformats.org/officeDocument/2006/relationships}id"
)
if image_id and image_id in doc.part.rels:
append_image_link(image_id, has_drawing)
append_image_link(image_id, has_drawing, target_buffer)
# Find imagedata element in VML
image_data = shape.find(".//{urn:schemas-microsoft-com:vml}imagedata")
if image_data is not None:
@ -316,9 +293,93 @@ class WordExtractor(BaseExtractor):
"{http://schemas.openxmlformats.org/officeDocument/2006/relationships}id"
)
if image_id and image_id in doc.part.rels:
append_image_link(image_id, has_drawing)
append_image_link(image_id, has_drawing, target_buffer)
if run.text.strip():
paragraph_content.append(run.text.strip())
target_buffer.append(run.text.strip())
def process_hyperlink(hyperlink_elem, target_buffer):
# Helper to extract text from a hyperlink element and append it to target_buffer
r_id = hyperlink_elem.get(qn("r:id"))
# Extract text from runs inside the hyperlink
link_text_parts = []
for run_elem in hyperlink_elem.findall(qn("w:r")):
run = Run(run_elem, paragraph)
# Hyperlink text may be split across multiple runs (e.g., with different formatting),
# so collect all run texts first
if run.text:
link_text_parts.append(run.text)
link_text = "".join(link_text_parts).strip()
# Resolve URL
if r_id:
try:
rel = doc.part.rels.get(r_id)
if rel and rel.is_external:
link_text = f"[{link_text or rel.target_ref}]({rel.target_ref})"
except Exception:
logger.exception("Failed to resolve URL for hyperlink with r:id: %s", r_id)
if link_text:
target_buffer.append(link_text)
paragraph_content = []
# State for legacy HYPERLINK fields
hyperlink_field_url = None
hyperlink_field_text_parts: list = []
is_collecting_field_text = False
# Iterate through paragraph elements in document order
for child in paragraph._element:
tag = child.tag
if tag == qn("w:r"):
# Regular run
run = Run(child, paragraph)
# Check for fldChar (begin/end/separate) and instrText for legacy hyperlinks
fld_chars = child.findall(qn("w:fldChar"))
instr_texts = child.findall(qn("w:instrText"))
# Handle Fields
if fld_chars or instr_texts:
# Process instrText to find HYPERLINK "url"
for instr in instr_texts:
if instr.text and "HYPERLINK" in instr.text:
# Quick regex to extract URL
match = re.search(r'HYPERLINK\s+"([^"]+)"', instr.text, re.IGNORECASE)
if match:
hyperlink_field_url = match.group(1)
# Process fldChar
for fld_char in fld_chars:
fld_char_type = fld_char.get(qn("w:fldCharType"))
if fld_char_type == "begin":
# Start of a field: reset legacy link state
hyperlink_field_url = None
hyperlink_field_text_parts = []
is_collecting_field_text = False
elif fld_char_type == "separate":
# Separator: if we found a URL, start collecting visible text
if hyperlink_field_url:
is_collecting_field_text = True
elif fld_char_type == "end":
# End of field
if is_collecting_field_text and hyperlink_field_url:
# Create markdown link and append to main content
display_text = "".join(hyperlink_field_text_parts).strip()
if display_text:
link_md = f"[{display_text}]({hyperlink_field_url})"
paragraph_content.append(link_md)
# Reset state
hyperlink_field_url = None
hyperlink_field_text_parts = []
is_collecting_field_text = False
# Decide where to append content
target_buffer = hyperlink_field_text_parts if is_collecting_field_text else paragraph_content
process_run(run, target_buffer)
elif tag == qn("w:hyperlink"):
process_hyperlink(child, paragraph_content)
return "".join(paragraph_content) if paragraph_content else ""
paragraphs = doc.paragraphs.copy()

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import json
from collections.abc import Sequence
from typing import Any
@ -16,7 +18,7 @@ class TaskWrapper(BaseModel):
return self.model_dump_json()
@classmethod
def deserialize(cls, serialized_data: str) -> "TaskWrapper":
def deserialize(cls, serialized_data: str) -> TaskWrapper:
return cls.model_validate_json(serialized_data)

View File

@ -1198,18 +1198,24 @@ class DatasetRetrieval:
json_field = DatasetDocument.doc_metadata[metadata_name].as_string()
from libs.helper import escape_like_pattern
match condition:
case "contains":
filters.append(json_field.like(f"%{value}%"))
escaped_value = escape_like_pattern(str(value))
filters.append(json_field.like(f"%{escaped_value}%", escape="\\"))
case "not contains":
filters.append(json_field.notlike(f"%{value}%"))
escaped_value = escape_like_pattern(str(value))
filters.append(json_field.notlike(f"%{escaped_value}%", escape="\\"))
case "start with":
filters.append(json_field.like(f"{value}%"))
escaped_value = escape_like_pattern(str(value))
filters.append(json_field.like(f"{escaped_value}%", escape="\\"))
case "end with":
filters.append(json_field.like(f"%{value}"))
escaped_value = escape_like_pattern(str(value))
filters.append(json_field.like(f"%{escaped_value}", escape="\\"))
case "is" | "=":
if isinstance(value, str):

View File

@ -29,6 +29,7 @@ from models import (
Account,
CreatorUserRole,
EndUser,
LLMGenerationDetail,
WorkflowNodeExecutionModel,
WorkflowNodeExecutionTriggeredFrom,
)
@ -457,6 +458,113 @@ class SQLAlchemyWorkflowNodeExecutionRepository(WorkflowNodeExecutionRepository)
session.merge(db_model)
session.flush()
# Save LLMGenerationDetail for LLM nodes with successful execution
if (
domain_model.node_type == NodeType.LLM
and domain_model.status == WorkflowNodeExecutionStatus.SUCCEEDED
and domain_model.outputs is not None
):
self._save_llm_generation_detail(session, domain_model)
def _save_llm_generation_detail(self, session, execution: WorkflowNodeExecution) -> None:
"""
Save LLM generation detail for LLM nodes.
Extracts reasoning_content, tool_calls, and sequence from outputs and metadata.
"""
outputs = execution.outputs or {}
metadata = execution.metadata or {}
reasoning_list = self._extract_reasoning(outputs)
tool_calls_list = self._extract_tool_calls(metadata.get(WorkflowNodeExecutionMetadataKey.AGENT_LOG))
if not reasoning_list and not tool_calls_list:
return
sequence = self._build_generation_sequence(outputs.get("text", ""), reasoning_list, tool_calls_list)
self._upsert_generation_detail(session, execution, reasoning_list, tool_calls_list, sequence)
def _extract_reasoning(self, outputs: Mapping[str, Any]) -> list[str]:
"""Extract reasoning_content as a clean list of non-empty strings."""
reasoning_content = outputs.get("reasoning_content")
if isinstance(reasoning_content, str):
trimmed = reasoning_content.strip()
return [trimmed] if trimmed else []
if isinstance(reasoning_content, list):
return [item.strip() for item in reasoning_content if isinstance(item, str) and item.strip()]
return []
def _extract_tool_calls(self, agent_log: Any) -> list[dict[str, str]]:
"""Extract tool call records from agent logs."""
if not agent_log or not isinstance(agent_log, list):
return []
tool_calls: list[dict[str, str]] = []
for log in agent_log:
log_data = log.data if hasattr(log, "data") else (log.get("data", {}) if isinstance(log, dict) else {})
tool_name = log_data.get("tool_name")
if tool_name and str(tool_name).strip():
tool_calls.append(
{
"id": log_data.get("tool_call_id", ""),
"name": tool_name,
"arguments": json.dumps(log_data.get("tool_args", {})),
"result": str(log_data.get("output", "")),
}
)
return tool_calls
def _build_generation_sequence(
self, text: str, reasoning_list: list[str], tool_calls_list: list[dict[str, str]]
) -> list[dict[str, Any]]:
"""Build a simple content/reasoning/tool_call sequence."""
sequence: list[dict[str, Any]] = []
if text:
sequence.append({"type": "content", "start": 0, "end": len(text)})
for index in range(len(reasoning_list)):
sequence.append({"type": "reasoning", "index": index})
for index in range(len(tool_calls_list)):
sequence.append({"type": "tool_call", "index": index})
return sequence
def _upsert_generation_detail(
self,
session,
execution: WorkflowNodeExecution,
reasoning_list: list[str],
tool_calls_list: list[dict[str, str]],
sequence: list[dict[str, Any]],
) -> None:
"""Insert or update LLMGenerationDetail with serialized fields."""
existing = (
session.query(LLMGenerationDetail)
.filter_by(
workflow_run_id=execution.workflow_execution_id,
node_id=execution.node_id,
)
.first()
)
reasoning_json = json.dumps(reasoning_list) if reasoning_list else None
tool_calls_json = json.dumps(tool_calls_list) if tool_calls_list else None
sequence_json = json.dumps(sequence) if sequence else None
if existing:
existing.reasoning_content = reasoning_json
existing.tool_calls = tool_calls_json
existing.sequence = sequence_json
return
generation_detail = LLMGenerationDetail(
tenant_id=self._tenant_id,
app_id=self._app_id,
workflow_run_id=execution.workflow_execution_id,
node_id=execution.node_id,
reasoning_content=reasoning_json,
tool_calls=tool_calls_json,
sequence=sequence_json,
)
session.add(generation_detail)
def get_db_models_by_workflow_run(
self,
workflow_run_id: str,

View File

@ -1,9 +1,11 @@
from __future__ import annotations
import json
import logging
import threading
from collections.abc import Mapping, MutableMapping
from pathlib import Path
from typing import Any, ClassVar, Optional
from typing import Any, ClassVar
class SchemaRegistry:
@ -11,7 +13,7 @@ class SchemaRegistry:
logger: ClassVar[logging.Logger] = logging.getLogger(__name__)
_default_instance: ClassVar[Optional["SchemaRegistry"]] = None
_default_instance: ClassVar[SchemaRegistry | None] = None
_lock: ClassVar[threading.Lock] = threading.Lock()
def __init__(self, base_dir: str):
@ -20,7 +22,7 @@ class SchemaRegistry:
self.metadata: MutableMapping[str, MutableMapping[str, Any]] = {}
@classmethod
def default_registry(cls) -> "SchemaRegistry":
def default_registry(cls) -> SchemaRegistry:
"""Returns the default schema registry for builtin schemas (thread-safe singleton)"""
if cls._default_instance is None:
with cls._lock:

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from collections.abc import Generator
from copy import deepcopy
@ -6,6 +8,7 @@ from typing import TYPE_CHECKING, Any
if TYPE_CHECKING:
from models.model import File
from core.model_runtime.entities.message_entities import PromptMessageTool
from core.tools.__base.tool_runtime import ToolRuntime
from core.tools.entities.tool_entities import (
ToolEntity,
@ -24,7 +27,7 @@ class Tool(ABC):
self.entity = entity
self.runtime = runtime
def fork_tool_runtime(self, runtime: ToolRuntime) -> "Tool":
def fork_tool_runtime(self, runtime: ToolRuntime) -> Tool:
"""
fork a new tool with metadata
:return: the new tool
@ -152,6 +155,60 @@ class Tool(ABC):
return parameters
def to_prompt_message_tool(self) -> PromptMessageTool:
message_tool = PromptMessageTool(
name=self.entity.identity.name,
description=self.entity.description.llm if self.entity.description else "",
parameters={
"type": "object",
"properties": {},
"required": [],
},
)
parameters = self.get_merged_runtime_parameters()
for parameter in parameters:
if parameter.form != ToolParameter.ToolParameterForm.LLM:
continue
parameter_type = parameter.type.as_normal_type()
if parameter.type in {
ToolParameter.ToolParameterType.SYSTEM_FILES,
ToolParameter.ToolParameterType.FILE,
ToolParameter.ToolParameterType.FILES,
}:
# Determine the description based on parameter type
if parameter.type == ToolParameter.ToolParameterType.FILE:
file_format_desc = " Input the file id with format: [File: file_id]."
else:
file_format_desc = "Input the file id with format: [Files: file_id1, file_id2, ...]. "
message_tool.parameters["properties"][parameter.name] = {
"type": "string",
"description": (parameter.llm_description or "") + file_format_desc,
}
continue
enum = []
if parameter.type == ToolParameter.ToolParameterType.SELECT:
enum = [option.value for option in parameter.options] if parameter.options else []
message_tool.parameters["properties"][parameter.name] = (
{
"type": parameter_type,
"description": parameter.llm_description or "",
}
if parameter.input_schema is None
else parameter.input_schema
)
if len(enum) > 0:
message_tool.parameters["properties"][parameter.name]["enum"] = enum
if parameter.required:
message_tool.parameters["required"].append(parameter.name)
return message_tool
def create_image_message(
self,
image: str,
@ -166,7 +223,7 @@ class Tool(ABC):
type=ToolInvokeMessage.MessageType.IMAGE, message=ToolInvokeMessage.TextMessage(text=image)
)
def create_file_message(self, file: "File") -> ToolInvokeMessage:
def create_file_message(self, file: File) -> ToolInvokeMessage:
return ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.FILE,
message=ToolInvokeMessage.FileMessage(),

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.entities.message_entities import PromptMessage, SystemPromptMessage, UserPromptMessage
from core.tools.__base.tool import Tool
@ -24,7 +26,7 @@ class BuiltinTool(Tool):
super().__init__(**kwargs)
self.provider = provider
def fork_tool_runtime(self, runtime: ToolRuntime) -> "BuiltinTool":
def fork_tool_runtime(self, runtime: ToolRuntime) -> BuiltinTool:
"""
fork a new tool with metadata
:return: the new tool

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from pydantic import Field
from sqlalchemy import select
@ -32,7 +34,7 @@ class ApiToolProviderController(ToolProviderController):
self.tools = []
@classmethod
def from_db(cls, db_provider: ApiToolProvider, auth_type: ApiProviderAuthType) -> "ApiToolProviderController":
def from_db(cls, db_provider: ApiToolProvider, auth_type: ApiProviderAuthType) -> ApiToolProviderController:
credentials_schema = [
ProviderConfig(
name="auth_type",

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import base64
import contextlib
from collections.abc import Mapping
@ -55,7 +57,7 @@ class ToolProviderType(StrEnum):
MCP = auto()
@classmethod
def value_of(cls, value: str) -> "ToolProviderType":
def value_of(cls, value: str) -> ToolProviderType:
"""
Get value of given mode.
@ -79,7 +81,7 @@ class ApiProviderSchemaType(StrEnum):
OPENAI_ACTIONS = auto()
@classmethod
def value_of(cls, value: str) -> "ApiProviderSchemaType":
def value_of(cls, value: str) -> ApiProviderSchemaType:
"""
Get value of given mode.
@ -102,7 +104,7 @@ class ApiProviderAuthType(StrEnum):
API_KEY_QUERY = auto()
@classmethod
def value_of(cls, value: str) -> "ApiProviderAuthType":
def value_of(cls, value: str) -> ApiProviderAuthType:
"""
Get value of given mode.
@ -307,7 +309,7 @@ class ToolParameter(PluginParameter):
typ: ToolParameterType,
required: bool,
options: list[str] | None = None,
) -> "ToolParameter":
) -> ToolParameter:
"""
get a simple tool parameter
@ -429,14 +431,14 @@ class ToolInvokeMeta(BaseModel):
tool_config: dict | None = None
@classmethod
def empty(cls) -> "ToolInvokeMeta":
def empty(cls) -> ToolInvokeMeta:
"""
Get an empty instance of ToolInvokeMeta
"""
return cls(time_cost=0.0, error=None, tool_config={})
@classmethod
def error_instance(cls, error: str) -> "ToolInvokeMeta":
def error_instance(cls, error: str) -> ToolInvokeMeta:
"""
Get an instance of ToolInvokeMeta with error
"""

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import base64
import json
import logging
@ -118,7 +120,7 @@ class MCPTool(Tool):
for item in json_list:
yield self.create_json_message(item)
def fork_tool_runtime(self, runtime: ToolRuntime) -> "MCPTool":
def fork_tool_runtime(self, runtime: ToolRuntime) -> MCPTool:
return MCPTool(
entity=self.entity,
runtime=runtime,

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from collections.abc import Generator
from typing import Any
@ -46,7 +48,7 @@ class PluginTool(Tool):
message_id=message_id,
)
def fork_tool_runtime(self, runtime: ToolRuntime) -> "PluginTool":
def fork_tool_runtime(self, runtime: ToolRuntime) -> PluginTool:
return PluginTool(
entity=self.entity,
runtime=runtime,

View File

@ -7,12 +7,12 @@ import time
from configs import dify_config
def sign_tool_file(tool_file_id: str, extension: str) -> str:
def sign_tool_file(tool_file_id: str, extension: str, for_external: bool = True) -> str:
"""
sign file to get a temporary url for plugin access
"""
# Use internal URL for plugin/tool file access in Docker environments
base_url = dify_config.INTERNAL_FILES_URL or dify_config.FILES_URL
# Use internal URL for plugin/tool file access in Docker environments, unless for_external is True
base_url = dify_config.FILES_URL if for_external else (dify_config.INTERNAL_FILES_URL or dify_config.FILES_URL)
file_preview_url = f"{base_url}/files/tools/{tool_file_id}{extension}"
timestamp = str(int(time.time()))

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from collections.abc import Mapping
from pydantic import Field
@ -47,7 +49,7 @@ class WorkflowToolProviderController(ToolProviderController):
self.provider_id = provider_id
@classmethod
def from_db(cls, db_provider: WorkflowToolProvider) -> "WorkflowToolProviderController":
def from_db(cls, db_provider: WorkflowToolProvider) -> WorkflowToolProviderController:
with session_factory.create_session() as session, session.begin():
app = session.get(App, db_provider.app_id)
if not app:

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import json
import logging
from collections.abc import Generator, Mapping, Sequence
@ -181,7 +183,7 @@ class WorkflowTool(Tool):
return found
return None
def fork_tool_runtime(self, runtime: ToolRuntime) -> "WorkflowTool":
def fork_tool_runtime(self, runtime: ToolRuntime) -> WorkflowTool:
"""
fork a new tool with metadata

View File

@ -1,6 +1,8 @@
from __future__ import annotations
from collections.abc import Mapping
from enum import StrEnum
from typing import TYPE_CHECKING, Any, Optional
from typing import TYPE_CHECKING, Any
from core.file.models import File
@ -52,7 +54,7 @@ class SegmentType(StrEnum):
return self in _ARRAY_TYPES
@classmethod
def infer_segment_type(cls, value: Any) -> Optional["SegmentType"]:
def infer_segment_type(cls, value: Any) -> SegmentType | None:
"""
Attempt to infer the `SegmentType` based on the Python type of the `value` parameter.
@ -173,7 +175,7 @@ class SegmentType(StrEnum):
raise AssertionError("this statement should be unreachable.")
@staticmethod
def cast_value(value: Any, type_: "SegmentType"):
def cast_value(value: Any, type_: SegmentType):
# Cast Python's `bool` type to `int` when the runtime type requires
# an integer or number.
#
@ -193,7 +195,7 @@ class SegmentType(StrEnum):
return [int(i) for i in value]
return value
def exposed_type(self) -> "SegmentType":
def exposed_type(self) -> SegmentType:
"""Returns the type exposed to the frontend.
The frontend treats `INTEGER` and `FLOAT` as `NUMBER`, so these are returned as `NUMBER` here.
@ -202,7 +204,7 @@ class SegmentType(StrEnum):
return SegmentType.NUMBER
return self
def element_type(self) -> "SegmentType | None":
def element_type(self) -> SegmentType | None:
"""Return the element type of the current segment type, or `None` if the element type is undefined.
Raises:
@ -217,7 +219,7 @@ class SegmentType(StrEnum):
return _ARRAY_ELEMENT_TYPES_MAPPING.get(self)
@staticmethod
def get_zero_value(t: "SegmentType"):
def get_zero_value(t: SegmentType):
# Lazy import to avoid circular dependency
from factories import variable_factory

View File

@ -1,11 +1,16 @@
from .agent import AgentNodeStrategyInit
from .graph_init_params import GraphInitParams
from .tool_entities import ToolCall, ToolCallResult, ToolResult, ToolResultStatus
from .workflow_execution import WorkflowExecution
from .workflow_node_execution import WorkflowNodeExecution
__all__ = [
"AgentNodeStrategyInit",
"GraphInitParams",
"ToolCall",
"ToolCallResult",
"ToolResult",
"ToolResultStatus",
"WorkflowExecution",
"WorkflowNodeExecution",
]

View File

@ -0,0 +1,39 @@
from enum import StrEnum
from pydantic import BaseModel, Field
from core.file import File
class ToolResultStatus(StrEnum):
SUCCESS = "success"
ERROR = "error"
class ToolCall(BaseModel):
id: str | None = Field(default=None, description="Unique identifier for this tool call")
name: str | None = Field(default=None, description="Name of the tool being called")
arguments: str | None = Field(default=None, description="Accumulated tool arguments JSON")
icon: str | dict | None = Field(default=None, description="Icon of the tool")
icon_dark: str | dict | None = Field(default=None, description="Dark theme icon of the tool")
class ToolResult(BaseModel):
id: str | None = Field(default=None, description="Identifier of the tool call this result belongs to")
name: str | None = Field(default=None, description="Name of the tool")
output: str | None = Field(default=None, description="Tool output text, error or success message")
files: list[str] = Field(default_factory=list, description="File produced by tool")
status: ToolResultStatus | None = Field(default=ToolResultStatus.SUCCESS, description="Tool execution status")
elapsed_time: float | None = Field(default=None, description="Elapsed seconds spent executing the tool")
icon: str | dict | None = Field(default=None, description="Icon of the tool")
icon_dark: str | dict | None = Field(default=None, description="Dark theme icon of the tool")
class ToolCallResult(BaseModel):
id: str | None = Field(default=None, description="Identifier for the tool call")
name: str | None = Field(default=None, description="Name of the tool")
arguments: str | None = Field(default=None, description="Accumulated tool arguments JSON")
output: str | None = Field(default=None, description="Tool output text, error or success message")
files: list[File] = Field(default_factory=list, description="File produced by tool")
status: ToolResultStatus = Field(default=ToolResultStatus.SUCCESS, description="Tool execution status")
elapsed_time: float | None = Field(default=None, description="Elapsed seconds spent executing the tool")

View File

@ -5,6 +5,8 @@ Models are independent of the storage mechanism and don't contain
implementation details like tenant_id, app_id, etc.
"""
from __future__ import annotations
from collections.abc import Mapping
from datetime import datetime
from typing import Any
@ -59,7 +61,7 @@ class WorkflowExecution(BaseModel):
graph: Mapping[str, Any],
inputs: Mapping[str, Any],
started_at: datetime,
) -> "WorkflowExecution":
) -> WorkflowExecution:
return WorkflowExecution(
id_=id_,
workflow_id=workflow_id,

View File

@ -248,6 +248,8 @@ class WorkflowNodeExecutionMetadataKey(StrEnum):
ERROR_STRATEGY = "error_strategy" # node in continue on error mode return the field
LOOP_VARIABLE_MAP = "loop_variable_map" # single loop variable output
DATASOURCE_INFO = "datasource_info"
LLM_CONTENT_SEQUENCE = "llm_content_sequence"
LLM_TRACE = "llm_trace"
COMPLETED_REASON = "completed_reason" # completed reason for loop node

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import logging
from collections import defaultdict
from collections.abc import Mapping, Sequence
@ -175,7 +177,7 @@ class Graph:
def _create_node_instances(
cls,
node_configs_map: dict[str, dict[str, object]],
node_factory: "NodeFactory",
node_factory: NodeFactory,
) -> dict[str, Node]:
"""
Create node instances from configurations using the node factory.
@ -197,7 +199,7 @@ class Graph:
return nodes
@classmethod
def new(cls) -> "GraphBuilder":
def new(cls) -> GraphBuilder:
"""Create a fluent builder for assembling a graph programmatically."""
return GraphBuilder(graph_cls=cls)
@ -284,9 +286,9 @@ class Graph:
cls,
*,
graph_config: Mapping[str, object],
node_factory: "NodeFactory",
node_factory: NodeFactory,
root_node_id: str | None = None,
) -> "Graph":
) -> Graph:
"""
Initialize graph
@ -383,7 +385,7 @@ class GraphBuilder:
self._edges: list[Edge] = []
self._edge_counter = 0
def add_root(self, node: Node) -> "GraphBuilder":
def add_root(self, node: Node) -> GraphBuilder:
"""Register the root node. Must be called exactly once."""
if self._nodes:
@ -398,7 +400,7 @@ class GraphBuilder:
*,
from_node_id: str | None = None,
source_handle: str = "source",
) -> "GraphBuilder":
) -> GraphBuilder:
"""Append a node and connect it from the specified predecessor."""
if not self._nodes:
@ -419,7 +421,7 @@ class GraphBuilder:
return self
def connect(self, *, tail: str, head: str, source_handle: str = "source") -> "GraphBuilder":
def connect(self, *, tail: str, head: str, source_handle: str = "source") -> GraphBuilder:
"""Connect two existing nodes without adding a new node."""
if tail not in self._nodes_by_id:

View File

@ -5,9 +5,12 @@ This engine uses a modular architecture with separated packages following
Domain-Driven Design principles for improved maintainability and testability.
"""
from __future__ import annotations
import contextvars
import logging
import queue
import threading
from collections.abc import Generator
from typing import TYPE_CHECKING, cast, final
@ -75,10 +78,13 @@ class GraphEngine:
scale_down_idle_time: float | None = None,
) -> None:
"""Initialize the graph engine with all subsystems and dependencies."""
# stop event
self._stop_event = threading.Event()
# Bind runtime state to current workflow context
self._graph = graph
self._graph_runtime_state = graph_runtime_state
self._graph_runtime_state.stop_event = self._stop_event
self._graph_runtime_state.configure(graph=cast("GraphProtocol", graph))
self._command_channel = command_channel
@ -177,6 +183,7 @@ class GraphEngine:
max_workers=self._max_workers,
scale_up_threshold=self._scale_up_threshold,
scale_down_idle_time=self._scale_down_idle_time,
stop_event=self._stop_event,
)
# === Orchestration ===
@ -207,6 +214,7 @@ class GraphEngine:
event_handler=self._event_handler_registry,
execution_coordinator=self._execution_coordinator,
event_emitter=self._event_manager,
stop_event=self._stop_event,
)
# === Validation ===
@ -226,7 +234,7 @@ class GraphEngine:
) -> None:
layer.initialize(ReadOnlyGraphRuntimeStateWrapper(self._graph_runtime_state), self._command_channel)
def layer(self, layer: GraphEngineLayer) -> "GraphEngine":
def layer(self, layer: GraphEngineLayer) -> GraphEngine:
"""Add a layer for extending functionality."""
self._layers.append(layer)
self._bind_layer_context(layer)
@ -324,6 +332,7 @@ class GraphEngine:
def _start_execution(self, *, resume: bool = False) -> None:
"""Start execution subsystems."""
self._stop_event.clear()
paused_nodes: list[str] = []
if resume:
paused_nodes = self._graph_runtime_state.consume_paused_nodes()
@ -351,13 +360,12 @@ class GraphEngine:
def _stop_execution(self) -> None:
"""Stop execution subsystems."""
self._stop_event.set()
self._dispatcher.stop()
self._worker_pool.stop()
# Don't mark complete here as the dispatcher already does it
# Notify layers
logger = logging.getLogger(__name__)
for layer in self._layers:
try:
layer.on_graph_end(self._graph_execution.error)

View File

@ -44,6 +44,7 @@ class Dispatcher:
event_queue: queue.Queue[GraphNodeEventBase],
event_handler: "EventHandler",
execution_coordinator: ExecutionCoordinator,
stop_event: threading.Event,
event_emitter: EventManager | None = None,
) -> None:
"""
@ -61,7 +62,7 @@ class Dispatcher:
self._event_emitter = event_emitter
self._thread: threading.Thread | None = None
self._stop_event = threading.Event()
self._stop_event = stop_event
self._start_time: float | None = None
def start(self) -> None:
@ -69,16 +70,14 @@ class Dispatcher:
if self._thread and self._thread.is_alive():
return
self._stop_event.clear()
self._start_time = time.time()
self._thread = threading.Thread(target=self._dispatcher_loop, name="GraphDispatcher", daemon=True)
self._thread.start()
def stop(self) -> None:
"""Stop the dispatcher thread."""
self._stop_event.set()
if self._thread and self._thread.is_alive():
self._thread.join(timeout=10.0)
self._thread.join(timeout=2.0)
def _dispatcher_loop(self) -> None:
"""Main dispatcher loop."""

View File

@ -2,6 +2,8 @@
Factory for creating ReadyQueue instances from serialized state.
"""
from __future__ import annotations
from typing import TYPE_CHECKING
from .in_memory import InMemoryReadyQueue
@ -11,7 +13,7 @@ if TYPE_CHECKING:
from .protocol import ReadyQueue
def create_ready_queue_from_state(state: ReadyQueueState) -> "ReadyQueue":
def create_ready_queue_from_state(state: ReadyQueueState) -> ReadyQueue:
"""
Create a ReadyQueue instance from a serialized state.

View File

@ -16,7 +16,13 @@ from pydantic import BaseModel, Field
from core.workflow.enums import NodeExecutionType, NodeState
from core.workflow.graph import Graph
from core.workflow.graph_events import NodeRunStreamChunkEvent, NodeRunSucceededEvent
from core.workflow.graph_events import (
ChunkType,
NodeRunStreamChunkEvent,
NodeRunSucceededEvent,
ToolCall,
ToolResult,
)
from core.workflow.nodes.base.template import TextSegment, VariableSegment
from core.workflow.runtime import VariablePool
@ -321,11 +327,24 @@ class ResponseStreamCoordinator:
selector: Sequence[str],
chunk: str,
is_final: bool = False,
chunk_type: ChunkType = ChunkType.TEXT,
tool_call: ToolCall | None = None,
tool_result: ToolResult | None = None,
) -> NodeRunStreamChunkEvent:
"""Create a stream chunk event with consistent structure.
For selectors with special prefixes (sys, env, conversation), we use the
active response node's information since these are not actual node IDs.
Args:
node_id: The node ID to attribute the event to
execution_id: The execution ID for this node
selector: The variable selector
chunk: The chunk content
is_final: Whether this is the final chunk
chunk_type: The semantic type of the chunk being streamed
tool_call: Structured data for tool_call chunks
tool_result: Structured data for tool_result chunks
"""
# Check if this is a special selector that doesn't correspond to a node
if selector and selector[0] not in self._graph.nodes and self._active_session:
@ -338,6 +357,9 @@ class ResponseStreamCoordinator:
selector=selector,
chunk=chunk,
is_final=is_final,
chunk_type=chunk_type,
tool_call=tool_call,
tool_result=tool_result,
)
# Standard case: selector refers to an actual node
@ -349,6 +371,9 @@ class ResponseStreamCoordinator:
selector=selector,
chunk=chunk,
is_final=is_final,
chunk_type=chunk_type,
tool_call=tool_call,
tool_result=tool_result,
)
def _process_variable_segment(self, segment: VariableSegment) -> tuple[Sequence[NodeRunStreamChunkEvent], bool]:
@ -356,6 +381,8 @@ class ResponseStreamCoordinator:
Handles both regular node selectors and special system selectors (sys, env, conversation).
For special selectors, we attribute the output to the active response node.
For object-type variables, automatically streams all child fields that have stream events.
"""
events: list[NodeRunStreamChunkEvent] = []
source_selector_prefix = segment.selector[0] if segment.selector else ""
@ -364,60 +391,81 @@ class ResponseStreamCoordinator:
# Determine which node to attribute the output to
# For special selectors (sys, env, conversation), use the active response node
# For regular selectors, use the source node
if self._active_session and source_selector_prefix not in self._graph.nodes:
# Special selector - use active response node
output_node_id = self._active_session.node_id
else:
# Regular node selector
output_node_id = source_selector_prefix
active_session = self._active_session
special_selector = bool(active_session and source_selector_prefix not in self._graph.nodes)
output_node_id = active_session.node_id if special_selector and active_session else source_selector_prefix
execution_id = self._get_or_create_execution_id(output_node_id)
# Stream all available chunks
while self._has_unread_stream(segment.selector):
if event := self._pop_stream_chunk(segment.selector):
# For special selectors, we need to update the event to use
# the active response node's information
if self._active_session and source_selector_prefix not in self._graph.nodes:
response_node = self._graph.nodes[self._active_session.node_id]
# Create a new event with the response node's information
# but keep the original selector
updated_event = NodeRunStreamChunkEvent(
id=execution_id,
node_id=response_node.id,
node_type=response_node.node_type,
selector=event.selector, # Keep original selector
chunk=event.chunk,
is_final=event.is_final,
)
events.append(updated_event)
else:
# Regular node selector - use event as is
events.append(event)
# Check if there's a direct stream for this selector
has_direct_stream = (
tuple(segment.selector) in self._stream_buffers or tuple(segment.selector) in self._closed_streams
)
# Check if this is the last chunk by looking ahead
stream_closed = self._is_stream_closed(segment.selector)
# Check if stream is closed to determine if segment is complete
if stream_closed:
is_complete = True
stream_targets = [segment.selector] if has_direct_stream else sorted(self._find_child_streams(segment.selector))
elif value := self._variable_pool.get(segment.selector):
# Process scalar value
is_last_segment = bool(
self._active_session and self._active_session.index == len(self._active_session.template.segments) - 1
)
events.append(
self._create_stream_chunk_event(
node_id=output_node_id,
execution_id=execution_id,
selector=segment.selector,
chunk=value.markdown,
is_final=is_last_segment,
if stream_targets:
all_complete = True
for target_selector in stream_targets:
while self._has_unread_stream(target_selector):
if event := self._pop_stream_chunk(target_selector):
events.append(
self._rewrite_stream_event(
event=event,
output_node_id=output_node_id,
execution_id=execution_id,
special_selector=bool(special_selector),
)
)
if not self._is_stream_closed(target_selector):
all_complete = False
is_complete = all_complete
# Fallback: check if scalar value exists in variable pool
if not is_complete and not has_direct_stream:
if value := self._variable_pool.get(segment.selector):
# Process scalar value
is_last_segment = bool(
self._active_session
and self._active_session.index == len(self._active_session.template.segments) - 1
)
)
is_complete = True
events.append(
self._create_stream_chunk_event(
node_id=output_node_id,
execution_id=execution_id,
selector=segment.selector,
chunk=value.markdown,
is_final=is_last_segment,
)
)
is_complete = True
return events, is_complete
def _rewrite_stream_event(
self,
event: NodeRunStreamChunkEvent,
output_node_id: str,
execution_id: str,
special_selector: bool,
) -> NodeRunStreamChunkEvent:
"""Rewrite event to attribute to active response node when selector is special."""
if not special_selector:
return event
return self._create_stream_chunk_event(
node_id=output_node_id,
execution_id=execution_id,
selector=event.selector,
chunk=event.chunk,
is_final=event.is_final,
chunk_type=event.chunk_type,
tool_call=event.tool_call,
tool_result=event.tool_result,
)
def _process_text_segment(self, segment: TextSegment) -> Sequence[NodeRunStreamChunkEvent]:
"""Process a text segment. Returns (events, is_complete)."""
assert self._active_session is not None
@ -513,6 +561,36 @@ class ResponseStreamCoordinator:
# ============= Internal Stream Management Methods =============
def _find_child_streams(self, parent_selector: Sequence[str]) -> list[tuple[str, ...]]:
"""Find all child stream selectors that are descendants of the parent selector.
For example, if parent_selector is ['llm', 'generation'], this will find:
- ['llm', 'generation', 'content']
- ['llm', 'generation', 'tool_calls']
- ['llm', 'generation', 'tool_results']
- ['llm', 'generation', 'thought']
Args:
parent_selector: The parent selector to search for children
Returns:
List of child selector tuples found in stream buffers or closed streams
"""
parent_key = tuple(parent_selector)
parent_len = len(parent_key)
child_streams: set[tuple[str, ...]] = set()
# Search in both active buffers and closed streams
all_selectors = set(self._stream_buffers.keys()) | self._closed_streams
for selector_key in all_selectors:
# Check if this selector is a direct child of the parent
# Direct child means: len(child) == len(parent) + 1 and child starts with parent
if len(selector_key) == parent_len + 1 and selector_key[:parent_len] == parent_key:
child_streams.add(selector_key)
return sorted(child_streams)
def _append_stream_chunk(self, selector: Sequence[str], event: NodeRunStreamChunkEvent) -> None:
"""
Append a stream chunk to the internal buffer.

View File

@ -5,6 +5,8 @@ This module contains the private ResponseSession class used internally
by ResponseStreamCoordinator to manage streaming sessions.
"""
from __future__ import annotations
from dataclasses import dataclass
from core.workflow.nodes.answer.answer_node import AnswerNode
@ -27,7 +29,7 @@ class ResponseSession:
index: int = 0 # Current position in the template segments
@classmethod
def from_node(cls, node: Node) -> "ResponseSession":
def from_node(cls, node: Node) -> ResponseSession:
"""
Create a ResponseSession from an AnswerNode or EndNode.

View File

@ -42,6 +42,7 @@ class Worker(threading.Thread):
event_queue: queue.Queue[GraphNodeEventBase],
graph: Graph,
layers: Sequence[GraphEngineLayer],
stop_event: threading.Event,
worker_id: int = 0,
flask_app: Flask | None = None,
context_vars: contextvars.Context | None = None,
@ -65,13 +66,16 @@ class Worker(threading.Thread):
self._worker_id = worker_id
self._flask_app = flask_app
self._context_vars = context_vars
self._stop_event = threading.Event()
self._last_task_time = time.time()
self._stop_event = stop_event
self._layers = layers if layers is not None else []
def stop(self) -> None:
"""Signal the worker to stop processing."""
self._stop_event.set()
"""Worker is controlled via shared stop_event from GraphEngine.
This method is a no-op retained for backward compatibility.
"""
pass
@property
def is_idle(self) -> bool:

View File

@ -41,6 +41,7 @@ class WorkerPool:
event_queue: queue.Queue[GraphNodeEventBase],
graph: Graph,
layers: list[GraphEngineLayer],
stop_event: threading.Event,
flask_app: "Flask | None" = None,
context_vars: "Context | None" = None,
min_workers: int | None = None,
@ -81,6 +82,7 @@ class WorkerPool:
self._worker_counter = 0
self._lock = threading.RLock()
self._running = False
self._stop_event = stop_event
# No longer tracking worker states with callbacks to avoid lock contention
@ -135,7 +137,7 @@ class WorkerPool:
# Wait for workers to finish
for worker in self._workers:
if worker.is_alive():
worker.join(timeout=10.0)
worker.join(timeout=2.0)
self._workers.clear()
@ -152,6 +154,7 @@ class WorkerPool:
worker_id=worker_id,
flask_app=self._flask_app,
context_vars=self._context_vars,
stop_event=self._stop_event,
)
worker.start()

View File

@ -36,6 +36,7 @@ from .loop import (
# Node events
from .node import (
ChunkType,
NodeRunExceptionEvent,
NodeRunFailedEvent,
NodeRunPauseRequestedEvent,
@ -44,10 +45,13 @@ from .node import (
NodeRunStartedEvent,
NodeRunStreamChunkEvent,
NodeRunSucceededEvent,
ToolCall,
ToolResult,
)
__all__ = [
"BaseGraphEvent",
"ChunkType",
"GraphEngineEvent",
"GraphNodeEventBase",
"GraphRunAbortedEvent",
@ -73,4 +77,6 @@ __all__ = [
"NodeRunStartedEvent",
"NodeRunStreamChunkEvent",
"NodeRunSucceededEvent",
"ToolCall",
"ToolResult",
]

View File

@ -1,10 +1,11 @@
from collections.abc import Sequence
from datetime import datetime
from enum import StrEnum
from pydantic import Field
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
from core.workflow.entities import AgentNodeStrategyInit
from core.workflow.entities import AgentNodeStrategyInit, ToolCall, ToolResult
from core.workflow.entities.pause_reason import PauseReason
from .base import GraphNodeEventBase
@ -21,13 +22,39 @@ class NodeRunStartedEvent(GraphNodeEventBase):
provider_id: str = ""
class ChunkType(StrEnum):
"""Stream chunk type for LLM-related events."""
TEXT = "text" # Normal text streaming
TOOL_CALL = "tool_call" # Tool call arguments streaming
TOOL_RESULT = "tool_result" # Tool execution result
THOUGHT = "thought" # Agent thinking process (ReAct)
THOUGHT_START = "thought_start" # Agent thought start
THOUGHT_END = "thought_end" # Agent thought end
class NodeRunStreamChunkEvent(GraphNodeEventBase):
# Spec-compliant fields
"""Stream chunk event for workflow node execution."""
# Base fields
selector: Sequence[str] = Field(
..., description="selector identifying the output location (e.g., ['nodeA', 'text'])"
)
chunk: str = Field(..., description="the actual chunk content")
is_final: bool = Field(default=False, description="indicates if this is the last chunk")
chunk_type: ChunkType = Field(default=ChunkType.TEXT, description="type of the chunk")
# Tool call fields (when chunk_type == TOOL_CALL)
tool_call: ToolCall | None = Field(
default=None,
description="structured payload for tool_call chunks",
)
# Tool result fields (when chunk_type == TOOL_RESULT)
tool_result: ToolResult | None = Field(
default=None,
description="structured payload for tool_result chunks",
)
class NodeRunRetrieverResourceEvent(GraphNodeEventBase):

Some files were not shown because too many files have changed in this diff Show More