mirror of
https://github.com/langgenius/dify.git
synced 2026-02-01 16:41:58 +08:00
refactor: rm some dict api/controllers/console/app/generator.py api/core/llm_generator/llm_generator.py (#31709)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
95d68437d1
commit
89abea26f9
@ -1,5 +1,4 @@
|
||||
from collections.abc import Sequence
|
||||
from typing import Any
|
||||
|
||||
from flask_restx import Resource
|
||||
from pydantic import BaseModel, Field
|
||||
@ -12,10 +11,12 @@ from controllers.console.app.error import (
|
||||
ProviderQuotaExceededError,
|
||||
)
|
||||
from controllers.console.wraps import account_initialization_required, setup_required
|
||||
from core.app.app_config.entities import ModelConfig
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.helper.code_executor.code_node_provider import CodeNodeProvider
|
||||
from core.helper.code_executor.javascript.javascript_code_provider import JavascriptCodeProvider
|
||||
from core.helper.code_executor.python3.python3_code_provider import Python3CodeProvider
|
||||
from core.llm_generator.entities import RuleCodeGeneratePayload, RuleGeneratePayload, RuleStructuredOutputPayload
|
||||
from core.llm_generator.llm_generator import LLMGenerator
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from extensions.ext_database import db
|
||||
@ -26,28 +27,13 @@ from services.workflow_service import WorkflowService
|
||||
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
|
||||
|
||||
|
||||
class RuleGeneratePayload(BaseModel):
|
||||
instruction: str = Field(..., description="Rule generation instruction")
|
||||
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
|
||||
no_variable: bool = Field(default=False, description="Whether to exclude variables")
|
||||
|
||||
|
||||
class RuleCodeGeneratePayload(RuleGeneratePayload):
|
||||
code_language: str = Field(default="javascript", description="Programming language for code generation")
|
||||
|
||||
|
||||
class RuleStructuredOutputPayload(BaseModel):
|
||||
instruction: str = Field(..., description="Structured output generation instruction")
|
||||
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
|
||||
|
||||
|
||||
class InstructionGeneratePayload(BaseModel):
|
||||
flow_id: str = Field(..., description="Workflow/Flow ID")
|
||||
node_id: str = Field(default="", description="Node ID for workflow context")
|
||||
current: str = Field(default="", description="Current instruction text")
|
||||
language: str = Field(default="javascript", description="Programming language (javascript/python)")
|
||||
instruction: str = Field(..., description="Instruction for generation")
|
||||
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
|
||||
model_config_data: ModelConfig = Field(..., alias="model_config", description="Model configuration")
|
||||
ideal_output: str = Field(default="", description="Expected ideal output")
|
||||
|
||||
|
||||
@ -64,6 +50,7 @@ reg(RuleCodeGeneratePayload)
|
||||
reg(RuleStructuredOutputPayload)
|
||||
reg(InstructionGeneratePayload)
|
||||
reg(InstructionTemplatePayload)
|
||||
reg(ModelConfig)
|
||||
|
||||
|
||||
@console_ns.route("/rule-generate")
|
||||
@ -82,12 +69,7 @@ class RuleGenerateApi(Resource):
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
|
||||
try:
|
||||
rules = LLMGenerator.generate_rule_config(
|
||||
tenant_id=current_tenant_id,
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
no_variable=args.no_variable,
|
||||
)
|
||||
rules = LLMGenerator.generate_rule_config(tenant_id=current_tenant_id, args=args)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
except QuotaExceededError:
|
||||
@ -118,9 +100,7 @@ class RuleCodeGenerateApi(Resource):
|
||||
try:
|
||||
code_result = LLMGenerator.generate_code(
|
||||
tenant_id=current_tenant_id,
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
code_language=args.code_language,
|
||||
args=args,
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
@ -152,8 +132,7 @@ class RuleStructuredOutputGenerateApi(Resource):
|
||||
try:
|
||||
structured_output = LLMGenerator.generate_structured_output(
|
||||
tenant_id=current_tenant_id,
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
args=args,
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
@ -204,23 +183,29 @@ class InstructionGenerateApi(Resource):
|
||||
case "llm":
|
||||
return LLMGenerator.generate_rule_config(
|
||||
current_tenant_id,
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
no_variable=True,
|
||||
args=RuleGeneratePayload(
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
no_variable=True,
|
||||
),
|
||||
)
|
||||
case "agent":
|
||||
return LLMGenerator.generate_rule_config(
|
||||
current_tenant_id,
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
no_variable=True,
|
||||
args=RuleGeneratePayload(
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
no_variable=True,
|
||||
),
|
||||
)
|
||||
case "code":
|
||||
return LLMGenerator.generate_code(
|
||||
tenant_id=current_tenant_id,
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
code_language=args.language,
|
||||
args=RuleCodeGeneratePayload(
|
||||
instruction=args.instruction,
|
||||
model_config=args.model_config_data,
|
||||
code_language=args.language,
|
||||
),
|
||||
)
|
||||
case _:
|
||||
return {"error": f"invalid node type: {node_type}"}
|
||||
|
||||
20
api/core/llm_generator/entities.py
Normal file
20
api/core/llm_generator/entities.py
Normal file
@ -0,0 +1,20 @@
|
||||
"""Shared payload models for LLM generator helpers and controllers."""
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.app.app_config.entities import ModelConfig
|
||||
|
||||
|
||||
class RuleGeneratePayload(BaseModel):
|
||||
instruction: str = Field(..., description="Rule generation instruction")
|
||||
model_config_data: ModelConfig = Field(..., alias="model_config", description="Model configuration")
|
||||
no_variable: bool = Field(default=False, description="Whether to exclude variables")
|
||||
|
||||
|
||||
class RuleCodeGeneratePayload(RuleGeneratePayload):
|
||||
code_language: str = Field(default="javascript", description="Programming language for code generation")
|
||||
|
||||
|
||||
class RuleStructuredOutputPayload(BaseModel):
|
||||
instruction: str = Field(..., description="Structured output generation instruction")
|
||||
model_config_data: ModelConfig = Field(..., alias="model_config", description="Model configuration")
|
||||
@ -6,6 +6,8 @@ from typing import Protocol, cast
|
||||
|
||||
import json_repair
|
||||
|
||||
from core.app.app_config.entities import ModelConfig
|
||||
from core.llm_generator.entities import RuleCodeGeneratePayload, RuleGeneratePayload, RuleStructuredOutputPayload
|
||||
from core.llm_generator.output_parser.rule_config_generator import RuleConfigGeneratorOutputParser
|
||||
from core.llm_generator.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
|
||||
from core.llm_generator.prompts import (
|
||||
@ -151,19 +153,19 @@ class LLMGenerator:
|
||||
return questions
|
||||
|
||||
@classmethod
|
||||
def generate_rule_config(cls, tenant_id: str, instruction: str, model_config: dict, no_variable: bool):
|
||||
def generate_rule_config(cls, tenant_id: str, args: RuleGeneratePayload):
|
||||
output_parser = RuleConfigGeneratorOutputParser()
|
||||
|
||||
error = ""
|
||||
error_step = ""
|
||||
rule_config = {"prompt": "", "variables": [], "opening_statement": "", "error": ""}
|
||||
model_parameters = model_config.get("completion_params", {})
|
||||
if no_variable:
|
||||
model_parameters = args.model_config_data.completion_params
|
||||
if args.no_variable:
|
||||
prompt_template = PromptTemplateParser(WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE)
|
||||
|
||||
prompt_generate = prompt_template.format(
|
||||
inputs={
|
||||
"TASK_DESCRIPTION": instruction,
|
||||
"TASK_DESCRIPTION": args.instruction,
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
@ -175,8 +177,8 @@ class LLMGenerator:
|
||||
model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
provider=model_config.get("provider", ""),
|
||||
model=model_config.get("name", ""),
|
||||
provider=args.model_config_data.provider,
|
||||
model=args.model_config_data.name,
|
||||
)
|
||||
|
||||
try:
|
||||
@ -190,7 +192,7 @@ class LLMGenerator:
|
||||
error = str(e)
|
||||
error_step = "generate rule config"
|
||||
except Exception as e:
|
||||
logger.exception("Failed to generate rule config, model: %s", model_config.get("name"))
|
||||
logger.exception("Failed to generate rule config, model: %s", args.model_config_data.name)
|
||||
rule_config["error"] = str(e)
|
||||
|
||||
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
|
||||
@ -209,7 +211,7 @@ class LLMGenerator:
|
||||
# format the prompt_generate_prompt
|
||||
prompt_generate_prompt = prompt_template.format(
|
||||
inputs={
|
||||
"TASK_DESCRIPTION": instruction,
|
||||
"TASK_DESCRIPTION": args.instruction,
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
@ -220,8 +222,8 @@ class LLMGenerator:
|
||||
model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
provider=model_config.get("provider", ""),
|
||||
model=model_config.get("name", ""),
|
||||
provider=args.model_config_data.provider,
|
||||
model=args.model_config_data.name,
|
||||
)
|
||||
|
||||
try:
|
||||
@ -250,7 +252,7 @@ class LLMGenerator:
|
||||
# the second step to generate the task_parameter and task_statement
|
||||
statement_generate_prompt = statement_template.format(
|
||||
inputs={
|
||||
"TASK_DESCRIPTION": instruction,
|
||||
"TASK_DESCRIPTION": args.instruction,
|
||||
"INPUT_TEXT": prompt_content.message.get_text_content(),
|
||||
},
|
||||
remove_template_variables=False,
|
||||
@ -276,7 +278,7 @@ class LLMGenerator:
|
||||
error_step = "generate conversation opener"
|
||||
|
||||
except Exception as e:
|
||||
logger.exception("Failed to generate rule config, model: %s", model_config.get("name"))
|
||||
logger.exception("Failed to generate rule config, model: %s", args.model_config_data.name)
|
||||
rule_config["error"] = str(e)
|
||||
|
||||
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
|
||||
@ -284,16 +286,20 @@ class LLMGenerator:
|
||||
return rule_config
|
||||
|
||||
@classmethod
|
||||
def generate_code(cls, tenant_id: str, instruction: str, model_config: dict, code_language: str = "javascript"):
|
||||
if code_language == "python":
|
||||
def generate_code(
|
||||
cls,
|
||||
tenant_id: str,
|
||||
args: RuleCodeGeneratePayload,
|
||||
):
|
||||
if args.code_language == "python":
|
||||
prompt_template = PromptTemplateParser(PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE)
|
||||
else:
|
||||
prompt_template = PromptTemplateParser(JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE)
|
||||
|
||||
prompt = prompt_template.format(
|
||||
inputs={
|
||||
"INSTRUCTION": instruction,
|
||||
"CODE_LANGUAGE": code_language,
|
||||
"INSTRUCTION": args.instruction,
|
||||
"CODE_LANGUAGE": args.code_language,
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
@ -302,28 +308,28 @@ class LLMGenerator:
|
||||
model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
provider=model_config.get("provider", ""),
|
||||
model=model_config.get("name", ""),
|
||||
provider=args.model_config_data.provider,
|
||||
model=args.model_config_data.name,
|
||||
)
|
||||
|
||||
prompt_messages = [UserPromptMessage(content=prompt)]
|
||||
model_parameters = model_config.get("completion_params", {})
|
||||
model_parameters = args.model_config_data.completion_params
|
||||
try:
|
||||
response: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
|
||||
generated_code = response.message.get_text_content()
|
||||
return {"code": generated_code, "language": code_language, "error": ""}
|
||||
return {"code": generated_code, "language": args.code_language, "error": ""}
|
||||
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
return {"code": "", "language": code_language, "error": f"Failed to generate code. Error: {error}"}
|
||||
return {"code": "", "language": args.code_language, "error": f"Failed to generate code. Error: {error}"}
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
"Failed to invoke LLM model, model: %s, language: %s", model_config.get("name"), code_language
|
||||
"Failed to invoke LLM model, model: %s, language: %s", args.model_config_data.name, args.code_language
|
||||
)
|
||||
return {"code": "", "language": code_language, "error": f"An unexpected error occurred: {str(e)}"}
|
||||
return {"code": "", "language": args.code_language, "error": f"An unexpected error occurred: {str(e)}"}
|
||||
|
||||
@classmethod
|
||||
def generate_qa_document(cls, tenant_id: str, query, document_language: str):
|
||||
@ -353,20 +359,20 @@ class LLMGenerator:
|
||||
return answer.strip()
|
||||
|
||||
@classmethod
|
||||
def generate_structured_output(cls, tenant_id: str, instruction: str, model_config: dict):
|
||||
def generate_structured_output(cls, tenant_id: str, args: RuleStructuredOutputPayload):
|
||||
model_manager = ModelManager()
|
||||
model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
provider=model_config.get("provider", ""),
|
||||
model=model_config.get("name", ""),
|
||||
provider=args.model_config_data.provider,
|
||||
model=args.model_config_data.name,
|
||||
)
|
||||
|
||||
prompt_messages = [
|
||||
SystemPromptMessage(content=SYSTEM_STRUCTURED_OUTPUT_GENERATE),
|
||||
UserPromptMessage(content=instruction),
|
||||
UserPromptMessage(content=args.instruction),
|
||||
]
|
||||
model_parameters = model_config.get("model_parameters", {})
|
||||
model_parameters = args.model_config_data.completion_params
|
||||
|
||||
try:
|
||||
response: LLMResult = model_instance.invoke_llm(
|
||||
@ -390,12 +396,17 @@ class LLMGenerator:
|
||||
error = str(e)
|
||||
return {"output": "", "error": f"Failed to generate JSON Schema. Error: {error}"}
|
||||
except Exception as e:
|
||||
logger.exception("Failed to invoke LLM model, model: %s", model_config.get("name"))
|
||||
logger.exception("Failed to invoke LLM model, model: %s", args.model_config_data.name)
|
||||
return {"output": "", "error": f"An unexpected error occurred: {str(e)}"}
|
||||
|
||||
@staticmethod
|
||||
def instruction_modify_legacy(
|
||||
tenant_id: str, flow_id: str, current: str, instruction: str, model_config: dict, ideal_output: str | None
|
||||
tenant_id: str,
|
||||
flow_id: str,
|
||||
current: str,
|
||||
instruction: str,
|
||||
model_config: ModelConfig,
|
||||
ideal_output: str | None,
|
||||
):
|
||||
last_run: Message | None = (
|
||||
db.session.query(Message).where(Message.app_id == flow_id).order_by(Message.created_at.desc()).first()
|
||||
@ -434,7 +445,7 @@ class LLMGenerator:
|
||||
node_id: str,
|
||||
current: str,
|
||||
instruction: str,
|
||||
model_config: dict,
|
||||
model_config: ModelConfig,
|
||||
ideal_output: str | None,
|
||||
workflow_service: WorkflowServiceInterface,
|
||||
):
|
||||
@ -505,7 +516,7 @@ class LLMGenerator:
|
||||
@staticmethod
|
||||
def __instruction_modify_common(
|
||||
tenant_id: str,
|
||||
model_config: dict,
|
||||
model_config: ModelConfig,
|
||||
last_run: dict | None,
|
||||
current: str | None,
|
||||
error_message: str | None,
|
||||
@ -526,8 +537,8 @@ class LLMGenerator:
|
||||
model_instance = ModelManager().get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
provider=model_config.get("provider", ""),
|
||||
model=model_config.get("name", ""),
|
||||
provider=model_config.provider,
|
||||
model=model_config.name,
|
||||
)
|
||||
match node_type:
|
||||
case "llm" | "agent":
|
||||
@ -570,7 +581,5 @@ class LLMGenerator:
|
||||
error = str(e)
|
||||
return {"error": f"Failed to generate code. Error: {error}"}
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
"Failed to invoke LLM model, model: %s", json.dumps(model_config.get("name")), exc_info=True
|
||||
)
|
||||
logger.exception("Failed to invoke LLM model, model: %s", json.dumps(model_config.name), exc_info=True)
|
||||
return {"error": f"An unexpected error occurred: {str(e)}"}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user