dify/api/services/app_generate_service.py
QuantumGhost 4f48b8a57d WIP: P2
2025-12-26 11:36:19 +08:00

269 lines
11 KiB
Python

import uuid
from collections.abc import Generator, Mapping
from typing import Any, Union
from configs import dify_config
from core.app.apps.advanced_chat.app_generator import AdvancedChatAppGenerator
from core.app.apps.agent_chat.app_generator import AgentChatAppGenerator
from core.app.apps.chat.app_generator import ChatAppGenerator
from core.app.apps.completion.app_generator import CompletionAppGenerator
from core.app.apps.workflow.app_generator import WorkflowAppGenerator
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.features.rate_limiting import RateLimit
from core.app.features.rate_limiting.rate_limit import rate_limit_context
from enums.quota_type import QuotaType, unlimited
from extensions.otel import AppGenerateHandler, trace_span
from models.model import Account, App, AppMode, EndUser
from models.workflow import Workflow
from services.errors.app import InvokeRateLimitError, QuotaExceededError, WorkflowIdFormatError, WorkflowNotFoundError
from models.model import Account, App, AppMode, EndUser
from models.workflow import Workflow, WorkflowRun
from services.errors.app import WorkflowIdFormatError, WorkflowNotFoundError
from services.errors.llm import InvokeRateLimitError
from services.workflow_service import WorkflowService
from tasks.app_generate.workflow_execute_task import ChatflowExecutionParams, chatflow_execute_task
class AppGenerateService:
@classmethod
@trace_span(AppGenerateHandler)
def generate(
cls,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool = True,
root_node_id: str | None = None,
):
"""
App Content Generate
:param app_model: app model
:param user: user
:param args: args
:param invoke_from: invoke from
:param streaming: streaming
:return:
"""
quota_charge = unlimited()
if dify_config.BILLING_ENABLED:
try:
quota_charge = QuotaType.WORKFLOW.consume(app_model.tenant_id)
except QuotaExceededError:
raise InvokeRateLimitError(f"Workflow execution quota limit reached for tenant {app_model.tenant_id}")
# app level rate limiter
max_active_request = cls._get_max_active_requests(app_model)
rate_limit = RateLimit(app_model.id, max_active_request)
request_id = RateLimit.gen_request_key()
try:
request_id = rate_limit.enter(request_id)
if app_model.mode == AppMode.COMPLETION:
return rate_limit.generate(
CompletionAppGenerator.convert_to_event_stream(
CompletionAppGenerator().generate(
app_model=app_model, user=user, args=args, invoke_from=invoke_from, streaming=streaming
),
),
request_id=request_id,
)
elif app_model.mode == AppMode.AGENT_CHAT or app_model.is_agent:
return rate_limit.generate(
AgentChatAppGenerator.convert_to_event_stream(
AgentChatAppGenerator().generate(
app_model=app_model, user=user, args=args, invoke_from=invoke_from, streaming=streaming
),
),
request_id,
)
elif app_model.mode == AppMode.CHAT:
return rate_limit.generate(
ChatAppGenerator.convert_to_event_stream(
ChatAppGenerator().generate(
app_model=app_model, user=user, args=args, invoke_from=invoke_from, streaming=streaming
),
),
request_id=request_id,
)
elif app_model.mode == AppMode.ADVANCED_CHAT:
workflow_id = args.get("workflow_id")
workflow = cls._get_workflow(app_model, invoke_from, workflow_id)
with rate_limit_context(rate_limit, request_id):
payload = ChatflowExecutionParams.new(
app_model=app_model,
workflow=workflow,
user=user,
args=args,
invoke_from=invoke_from,
streaming=streaming,
)
chatflow_execute_task.delay(payload.model_dump_json())
generator = AdvancedChatAppGenerator()
return rate_limit.generate(
generator.convert_to_event_stream(
generator.retrieve_events(AppMode.ADVANCED_CHAT, payload.workflow_run_id),
),
request_id=request_id,
)
elif app_model.mode == AppMode.WORKFLOW:
workflow_id = args.get("workflow_id")
workflow = cls._get_workflow(app_model, invoke_from, workflow_id)
return rate_limit.generate(
WorkflowAppGenerator.convert_to_event_stream(
WorkflowAppGenerator().generate(
app_model=app_model,
workflow=workflow,
user=user,
args=args,
invoke_from=invoke_from,
streaming=streaming,
root_node_id=root_node_id,
call_depth=0,
),
),
request_id,
)
else:
raise ValueError(f"Invalid app mode {app_model.mode}")
except Exception:
quota_charge.refund()
rate_limit.exit(request_id)
raise
finally:
if not streaming:
rate_limit.exit(request_id)
@staticmethod
def _get_max_active_requests(app: App) -> int:
"""
Get the maximum number of active requests allowed for an app.
Returns the smaller value between app's custom limit and global config limit.
A value of 0 means infinite (no limit).
Args:
app: The App model instance
Returns:
The maximum number of active requests allowed
"""
app_limit = app.max_active_requests or dify_config.APP_DEFAULT_ACTIVE_REQUESTS
config_limit = dify_config.APP_MAX_ACTIVE_REQUESTS
# Filter out infinite (0) values and return the minimum, or 0 if both are infinite
limits = [limit for limit in [app_limit, config_limit] if limit > 0]
return min(limits) if limits else 0
@classmethod
def generate_single_iteration(cls, app_model: App, user: Account, node_id: str, args: Any, streaming: bool = True):
if app_model.mode == AppMode.ADVANCED_CHAT:
workflow = cls._get_workflow(app_model, InvokeFrom.DEBUGGER)
return AdvancedChatAppGenerator.convert_to_event_stream(
AdvancedChatAppGenerator().single_iteration_generate(
app_model=app_model, workflow=workflow, node_id=node_id, user=user, args=args, streaming=streaming
)
)
elif app_model.mode == AppMode.WORKFLOW:
workflow = cls._get_workflow(app_model, InvokeFrom.DEBUGGER)
return AdvancedChatAppGenerator.convert_to_event_stream(
WorkflowAppGenerator().single_iteration_generate(
app_model=app_model, workflow=workflow, node_id=node_id, user=user, args=args, streaming=streaming
)
)
else:
raise ValueError(f"Invalid app mode {app_model.mode}")
@classmethod
def generate_single_loop(cls, app_model: App, user: Account, node_id: str, args: Any, streaming: bool = True):
if app_model.mode == AppMode.ADVANCED_CHAT:
workflow = cls._get_workflow(app_model, InvokeFrom.DEBUGGER)
return AdvancedChatAppGenerator.convert_to_event_stream(
AdvancedChatAppGenerator().single_loop_generate(
app_model=app_model, workflow=workflow, node_id=node_id, user=user, args=args, streaming=streaming
)
)
elif app_model.mode == AppMode.WORKFLOW:
workflow = cls._get_workflow(app_model, InvokeFrom.DEBUGGER)
return AdvancedChatAppGenerator.convert_to_event_stream(
WorkflowAppGenerator().single_loop_generate(
app_model=app_model, workflow=workflow, node_id=node_id, user=user, args=args, streaming=streaming
)
)
else:
raise ValueError(f"Invalid app mode {app_model.mode}")
@classmethod
def generate_more_like_this(
cls,
app_model: App,
user: Union[Account, EndUser],
message_id: str,
invoke_from: InvokeFrom,
streaming: bool = True,
) -> Union[Mapping, Generator]:
"""
Generate more like this
:param app_model: app model
:param user: user
:param message_id: message id
:param invoke_from: invoke from
:param streaming: streaming
:return:
"""
return CompletionAppGenerator().generate_more_like_this(
app_model=app_model, message_id=message_id, user=user, invoke_from=invoke_from, stream=streaming
)
@classmethod
def _get_workflow(cls, app_model: App, invoke_from: InvokeFrom, workflow_id: str | None = None) -> Workflow:
"""
Get workflow
:param app_model: app model
:param invoke_from: invoke from
:param workflow_id: optional workflow id to specify a specific version
:return:
"""
workflow_service = WorkflowService()
# If workflow_id is specified, get the specific workflow version
if workflow_id:
try:
_ = uuid.UUID(workflow_id)
except ValueError:
raise WorkflowIdFormatError(f"Invalid workflow_id format: '{workflow_id}'. ")
workflow = workflow_service.get_published_workflow_by_id(app_model=app_model, workflow_id=workflow_id)
if not workflow:
raise WorkflowNotFoundError(f"Workflow not found with id: {workflow_id}")
return workflow
if invoke_from == InvokeFrom.DEBUGGER:
# fetch draft workflow by app_model
workflow = workflow_service.get_draft_workflow(app_model=app_model)
if not workflow:
raise ValueError("Workflow not initialized")
else:
# fetch published workflow by app_model
workflow = workflow_service.get_published_workflow(app_model=app_model)
if not workflow:
raise ValueError("Workflow not published")
return workflow
@classmethod
def get_response_generator(
cls,
app_model: App,
workflow_run: WorkflowRun,
):
if workflow_run.status.is_ended():
# TODO(QuantumGhost): handled the ended scenario.
return
generator = AdvancedChatAppGenerator()
return generator.convert_to_event_stream(
generator.retrieve_events(app_model.mode, workflow_run.id),
)