# Copyright (c) 2024 Microsoft Corporation. # Licensed under the MIT License from graphrag.config.enums import ModelType from graphrag.config.models.graph_rag_config import GraphRagConfig from graphrag.index.workflows.extract_graph import ( run_workflow, ) from graphrag.utils.storage import load_table_from_storage from .util import ( DEFAULT_CHAT_MODEL_CONFIG, DEFAULT_EMBEDDING_MODEL_CONFIG, create_test_context, ) MOCK_LLM_ENTITY_RESPONSES = [ """ ("entity"<|>COMPANY_A<|>COMPANY<|>Company_A is a test company) ## ("entity"<|>COMPANY_B<|>COMPANY<|>Company_B owns Company_A and also shares an address with Company_A) ## ("entity"<|>PERSON_C<|>PERSON<|>Person_C is director of Company_A) ## ("relationship"<|>COMPANY_A<|>COMPANY_B<|>Company_A and Company_B are related because Company_A is 100% owned by Company_B and the two companies also share the same address)<|>2) ## ("relationship"<|>COMPANY_A<|>PERSON_C<|>Company_A and Person_C are related because Person_C is director of Company_A<|>1)) """.strip() ] MOCK_LLM_SUMMARIZATION_RESPONSES = [ """ This is a MOCK response for the LLM. It is summarized! """.strip() ] async def test_extract_graph(): context = await create_test_context( storage=["text_units"], ) extraction_model = DEFAULT_CHAT_MODEL_CONFIG.copy() extraction_model["type"] = ModelType.MockChat extraction_model["responses"] = MOCK_LLM_ENTITY_RESPONSES # type: ignore config = GraphRagConfig( models={ "default_chat_model": extraction_model, "default_embedding_model": DEFAULT_EMBEDDING_MODEL_CONFIG, } # type: ignore ) summarize_llm_settings = config.get_language_model_config( config.summarize_descriptions.model_id ).model_dump() summarize_llm_settings["type"] = ModelType.MockChat summarize_llm_settings["responses"] = MOCK_LLM_SUMMARIZATION_RESPONSES config.summarize_descriptions.max_input_tokens = 1000 config.summarize_descriptions.max_length = 100 await run_workflow(config, context) nodes_actual = await load_table_from_storage("entities", context.output_storage) edges_actual = await load_table_from_storage( "relationships", context.output_storage ) assert len(nodes_actual.columns) == 5 assert len(edges_actual.columns) == 5 # TODO: with the combined verb we can't force summarization # this is because the mock responses always result in a single description, which is returned verbatim rather than summarized # we need to update the mocking to provide somewhat unique graphs so a true merge happens # the assertion should grab a node and ensure the description matches the mock description, not the original as we are doing below assert nodes_actual["description"].to_numpy()[0] == "Company_A is a test company"