mirror of
https://github.com/microsoft/graphrag.git
synced 2026-01-14 09:07:20 +08:00
* Remove create_final_nodes * Rename final entity output to "entities" * Remove duplicate code from graph extraction * Rename create_final_relationships output to "relationships" * Rename create_final_communities output to "communities" * Combine compute_communities and create_final_communities * Rename create_final_covariates output to "covariates" * Rename create_final_community_reports output to "community_reports" * Rename create_final_text_units output to "text_units" * Rename create_final_documents output to "documents" * Remove transient snapshots config * Move create_final_entities to finalize_entities operation * Move create_final_relationships flow to finalize_relationships operation * Reuse some community report functions * Collapse most of graph and text unit-based report generation * Unify schemas files * Move community reports extractor * Move NLP report prompt to prompts folder * Fix a few pandas warnings * Rename embeddings config to embed_text * Rename claim_extraction config to extract_claims * Remove nltk from standard graph extraction * Fix verb tests * Fix extract graph config naming * Fix moved file reference * Create v1-to-v2 migration notebook * Semver * Fix smoke test artifact count * Raise tpm/rpm on smoke tests * Update drift settings for smoke tests * Reuse project directory var in api notebook * Format * Format
86 lines
2.8 KiB
Python
86 lines
2.8 KiB
Python
# Copyright (c) 2024 Microsoft Corporation.
|
|
# Licensed under the MIT License
|
|
|
|
import pandas as pd
|
|
from pandas.testing import assert_series_equal
|
|
|
|
import graphrag.config.defaults as defs
|
|
from graphrag.index.context import PipelineRunContext
|
|
from graphrag.index.run.utils import create_run_context
|
|
from graphrag.utils.storage import write_table_to_storage
|
|
|
|
pd.set_option("display.max_columns", None)
|
|
|
|
FAKE_API_KEY = "NOT_AN_API_KEY"
|
|
|
|
DEFAULT_CHAT_MODEL_CONFIG = {
|
|
"api_key": FAKE_API_KEY,
|
|
"type": defs.LLM_TYPE.value,
|
|
"model": defs.LLM_MODEL,
|
|
}
|
|
|
|
DEFAULT_EMBEDDING_MODEL_CONFIG = {
|
|
"api_key": FAKE_API_KEY,
|
|
"type": defs.EMBEDDING_TYPE.value,
|
|
"model": defs.EMBEDDING_MODEL,
|
|
}
|
|
|
|
DEFAULT_MODEL_CONFIG = {
|
|
defs.DEFAULT_CHAT_MODEL_ID: DEFAULT_CHAT_MODEL_CONFIG,
|
|
defs.DEFAULT_EMBEDDING_MODEL_ID: DEFAULT_EMBEDDING_MODEL_CONFIG,
|
|
}
|
|
|
|
|
|
async def create_test_context(storage: list[str] | None = None) -> PipelineRunContext:
|
|
"""Create a test context with tables loaded into storage storage."""
|
|
context = create_run_context(None, None, None)
|
|
|
|
# always set the input docs, but since our stored table is final, drop what wouldn't be in the original source input
|
|
input = load_test_table("documents")
|
|
input.drop(columns=["text_unit_ids"], inplace=True)
|
|
await write_table_to_storage(input, "documents", context.storage)
|
|
|
|
if storage:
|
|
for name in storage:
|
|
table = load_test_table(name)
|
|
# normal storage interface insists on bytes
|
|
await write_table_to_storage(table, name, context.storage)
|
|
|
|
return context
|
|
|
|
|
|
def load_test_table(output: str) -> pd.DataFrame:
|
|
"""Pass in the workflow output (generally the workflow name)"""
|
|
return pd.read_parquet(f"tests/verbs/data/{output}.parquet")
|
|
|
|
|
|
def compare_outputs(
|
|
actual: pd.DataFrame, expected: pd.DataFrame, columns: list[str] | None = None
|
|
) -> None:
|
|
"""Compare the actual and expected dataframes, optionally specifying columns to compare.
|
|
This uses assert_series_equal since we are sometimes intentionally omitting columns from the actual output.
|
|
"""
|
|
cols = expected.columns if columns is None else columns
|
|
|
|
assert len(actual) == len(expected), (
|
|
f"Expected: {len(expected)} rows, Actual: {len(actual)} rows"
|
|
)
|
|
|
|
for column in cols:
|
|
assert column in actual.columns
|
|
try:
|
|
# dtypes can differ since the test data is read from parquet and our workflow runs in memory
|
|
if column != "id": # don't check uuids
|
|
assert_series_equal(
|
|
actual[column],
|
|
expected[column],
|
|
check_dtype=False,
|
|
check_index=False,
|
|
)
|
|
except AssertionError:
|
|
print("Expected:")
|
|
print(expected[column])
|
|
print("Actual:")
|
|
print(actual[column])
|
|
raise
|