mirror of
https://github.com/microsoft/graphrag.git
synced 2026-01-14 09:07:20 +08:00
* Move text_embed to verb-less operation * Move embed_graph to verb-less operation * Return embeddings from embed_graph instead of modifying df * Semver * Use config existence instead of bool for graph embedding * Send clustering strategy directly
35 lines
1.1 KiB
Python
35 lines
1.1 KiB
Python
# Copyright (c) 2024 Microsoft Corporation.
|
|
# Licensed under the MIT License
|
|
|
|
"""A module containing run method definition."""
|
|
|
|
from typing import Any
|
|
|
|
import networkx as nx
|
|
|
|
from graphrag.index.graph.embedding import embed_nod2vec
|
|
from graphrag.index.graph.utils import stable_largest_connected_component
|
|
from graphrag.index.operations.embed_graph.typing import NodeEmbeddings
|
|
|
|
|
|
def run(graph: nx.Graph, args: dict[str, Any]) -> NodeEmbeddings:
|
|
"""Run method definition."""
|
|
if args.get("use_lcc", True):
|
|
graph = stable_largest_connected_component(graph)
|
|
|
|
# create graph embedding using node2vec
|
|
embeddings = embed_nod2vec(
|
|
graph=graph,
|
|
dimensions=args.get("dimensions", 1536),
|
|
num_walks=args.get("num_walks", 10),
|
|
walk_length=args.get("walk_length", 40),
|
|
window_size=args.get("window_size", 2),
|
|
iterations=args.get("iterations", 3),
|
|
random_seed=args.get("random_seed", 86),
|
|
)
|
|
|
|
pairs = zip(embeddings.nodes, embeddings.embeddings.tolist(), strict=True)
|
|
sorted_pairs = sorted(pairs, key=lambda x: x[0])
|
|
|
|
return dict(sorted_pairs)
|