graphrag/tests/integration/vector_stores/test_cosmosdb.py
gaudyb 82cd3b7df2
Some checks failed
gh-pages / build (push) Has been cancelled
Python CI / python-ci (ubuntu-latest, 3.10) (push) Has been cancelled
Python CI / python-ci (ubuntu-latest, 3.11) (push) Has been cancelled
Python CI / python-ci (windows-latest, 3.10) (push) Has been cancelled
Python CI / python-ci (windows-latest, 3.11) (push) Has been cancelled
Python Integration Tests / python-ci (ubuntu-latest, 3.10) (push) Has been cancelled
Python Integration Tests / python-ci (windows-latest, 3.10) (push) Has been cancelled
Python Notebook Tests / python-ci (ubuntu-latest, 3.10) (push) Has been cancelled
Python Notebook Tests / python-ci (windows-latest, 3.10) (push) Has been cancelled
Python Publish (pypi) / Upload release to PyPI (push) Has been cancelled
Python Smoke Tests / python-ci (ubuntu-latest, 3.10) (push) Has been cancelled
Python Smoke Tests / python-ci (windows-latest, 3.10) (push) Has been cancelled
Spellcheck / spellcheck (push) Has been cancelled
Custom vector store schema implementation (#2062)
* progress on vector customization

* fix for lancedb vectors

* cosmosdb implementation

* uv run poe format

* clean test for vector store

* semversioner update

* test_factory.py integration test fixes

* fixes for cosmosdb test

* integration test fix for lancedb

* uv fix for format

* test fixes

* fixes for tests

* fix cosmosdb bug

* print statement

* test

* test

* fix cosmosdb bug

* test validation

* validation cosmosdb

* validate cosmosdb

* fix cosmosdb

* fix small feedback from PR

---------

Co-authored-by: Gaudy Blanco <gaudy-microsoft@MacBook-Pro-m4-Gaudy-For-Work.local>
2025-09-19 10:11:34 -07:00

167 lines
5.4 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
"""Integration tests for CosmosDB vector store implementation."""
import sys
import numpy as np
import pytest
from graphrag.config.models.vector_store_schema_config import VectorStoreSchemaConfig
from graphrag.vector_stores.base import VectorStoreDocument
from graphrag.vector_stores.cosmosdb import CosmosDBVectorStore
# cspell:disable-next-line well-known-key
WELL_KNOWN_COSMOS_CONNECTION_STRING = "AccountEndpoint=https://127.0.0.1:8081/;AccountKey=C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw=="
# the cosmosdb emulator is only available on windows runners at this time
if not sys.platform.startswith("win"):
pytest.skip(
"encountered windows-only tests -- will skip for now", allow_module_level=True
)
def test_vector_store_operations():
"""Test basic vector store operations with CosmosDB."""
vector_store = CosmosDBVectorStore(
vector_store_schema_config=VectorStoreSchemaConfig(index_name="testvector"),
)
try:
vector_store.connect(
connection_string=WELL_KNOWN_COSMOS_CONNECTION_STRING,
database_name="test_db",
)
docs = [
VectorStoreDocument(
id="doc1",
text="This is document 1",
vector=[0.1, 0.2, 0.3, 0.4, 0.5],
attributes={"title": "Doc 1", "category": "test"},
),
VectorStoreDocument(
id="doc2",
text="This is document 2",
vector=[0.2, 0.3, 0.4, 0.5, 0.6],
attributes={"title": "Doc 2", "category": "test"},
),
]
vector_store.load_documents(docs)
vector_store.filter_by_id(["doc1"])
doc = vector_store.search_by_id("doc1")
assert doc.id == "doc1"
assert doc.text == "This is document 1"
assert doc.vector is not None
assert np.allclose(doc.vector, [0.1, 0.2, 0.3, 0.4, 0.5])
assert doc.attributes["title"] == "Doc 1"
# Define a simple text embedder function for testing
def mock_embedder(text: str) -> list[float]:
return [0.1, 0.2, 0.3, 0.4, 0.5] # Return fixed embedding
vector_results = vector_store.similarity_search_by_vector(
[0.1, 0.2, 0.3, 0.4, 0.5], k=2
)
assert len(vector_results) > 0
text_results = vector_store.similarity_search_by_text(
"test query", mock_embedder, k=2
)
assert len(text_results) > 0
finally:
vector_store.clear()
def test_clear():
"""Test clearing the vector store."""
vector_store = CosmosDBVectorStore(
vector_store_schema_config=VectorStoreSchemaConfig(index_name="testclear"),
)
try:
vector_store.connect(
connection_string=WELL_KNOWN_COSMOS_CONNECTION_STRING,
database_name="testclear",
)
doc = VectorStoreDocument(
id="test",
text="Test document",
vector=[0.1, 0.2, 0.3, 0.4, 0.5],
attributes={"title": "Test Doc"},
)
vector_store.load_documents([doc])
result = vector_store.search_by_id("test")
assert result.id == "test"
# Clear and verify document is removed
vector_store.clear()
assert vector_store._database_exists() is False # noqa: SLF001
finally:
pass
def test_vector_store_customization():
"""Test vector store customization with CosmosDB."""
vector_store = CosmosDBVectorStore(
vector_store_schema_config=VectorStoreSchemaConfig(
index_name="text-embeddings",
id_field="id",
text_field="text_custom",
vector_field="vector_custom",
attributes_field="attributes_custom",
vector_size=5,
),
)
try:
vector_store.connect(
connection_string=WELL_KNOWN_COSMOS_CONNECTION_STRING,
database_name="test_db",
)
docs = [
VectorStoreDocument(
id="doc1",
text="This is document 1",
vector=[0.1, 0.2, 0.3, 0.4, 0.5],
attributes={"title": "Doc 1", "category": "test"},
),
VectorStoreDocument(
id="doc2",
text="This is document 2",
vector=[0.2, 0.3, 0.4, 0.5, 0.6],
attributes={"title": "Doc 2", "category": "test"},
),
]
vector_store.load_documents(docs)
vector_store.filter_by_id(["doc1"])
doc = vector_store.search_by_id("doc1")
assert doc.id == "doc1"
assert doc.text == "This is document 1"
assert doc.vector is not None
assert np.allclose(doc.vector, [0.1, 0.2, 0.3, 0.4, 0.5])
assert doc.attributes["title"] == "Doc 1"
# Define a simple text embedder function for testing
def mock_embedder(text: str) -> list[float]:
return [0.1, 0.2, 0.3, 0.4, 0.5] # Return fixed embedding
vector_results = vector_store.similarity_search_by_vector(
[0.1, 0.2, 0.3, 0.4, 0.5], k=2
)
assert len(vector_results) > 0
text_results = vector_store.similarity_search_by_text(
"test query", mock_embedder, k=2
)
assert len(text_results) > 0
finally:
vector_store.clear()