graphrag/graphrag/index/operations/summarize_descriptions/description_summary_extractor.py
Nathan Evans ad4cdd685f
Some checks failed
gh-pages / build (push) Has been cancelled
Python CI / python-ci (ubuntu-latest, 3.10) (push) Has been cancelled
Python CI / python-ci (ubuntu-latest, 3.11) (push) Has been cancelled
Python CI / python-ci (windows-latest, 3.10) (push) Has been cancelled
Python CI / python-ci (windows-latest, 3.11) (push) Has been cancelled
Python Integration Tests / python-ci (ubuntu-latest, 3.10) (push) Has been cancelled
Python Integration Tests / python-ci (windows-latest, 3.10) (push) Has been cancelled
Python Notebook Tests / python-ci (ubuntu-latest, 3.10) (push) Has been cancelled
Python Notebook Tests / python-ci (windows-latest, 3.10) (push) Has been cancelled
Python Publish (pypi) / Upload release to PyPI (push) Has been cancelled
Python Smoke Tests / python-ci (ubuntu-latest, 3.10) (push) Has been cancelled
Python Smoke Tests / python-ci (windows-latest, 3.10) (push) Has been cancelled
Spellcheck / spellcheck (push) Has been cancelled
Support OpenAI reasoning models (#1841)
* Update tiktoken

* Add max_completion_tokens to model config

* Update/remove outdated comments

* Remove max_tokens from report generation

* Remove max_tokens from entity summarization

* Remove logit_bias from graph extraction

* Remove logit_bias from claim extraction

* Swap params if reasoning model

* Add reasoning model support to basic search

* Add reasoning model support for local and global search

* Support reasoning models with dynamic community selection

* Support reasoning models in DRIFT search

* Remove unused num_threads entry

* Semver

* Update openai

* Add reasoning_effort param
2025-04-22 14:15:26 -07:00

134 lines
4.4 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
"""A module containing 'GraphExtractionResult' and 'GraphExtractor' models."""
import json
from dataclasses import dataclass
from graphrag.index.typing.error_handler import ErrorHandlerFn
from graphrag.index.utils.tokens import num_tokens_from_string
from graphrag.language_model.protocol.base import ChatModel
from graphrag.prompts.index.summarize_descriptions import SUMMARIZE_PROMPT
# these tokens are used in the prompt
ENTITY_NAME_KEY = "entity_name"
DESCRIPTION_LIST_KEY = "description_list"
MAX_LENGTH_KEY = "max_length"
@dataclass
class SummarizationResult:
"""Unipartite graph extraction result class definition."""
id: str | tuple[str, str]
description: str
class SummarizeExtractor:
"""Unipartite graph extractor class definition."""
_model: ChatModel
_summarization_prompt: str
_on_error: ErrorHandlerFn
_max_summary_length: int
_max_input_tokens: int
def __init__(
self,
model_invoker: ChatModel,
max_summary_length: int,
max_input_tokens: int,
summarization_prompt: str | None = None,
on_error: ErrorHandlerFn | None = None,
):
"""Init method definition."""
# TODO: streamline construction
self._model = model_invoker
self._summarization_prompt = summarization_prompt or SUMMARIZE_PROMPT
self._on_error = on_error or (lambda _e, _s, _d: None)
self._max_summary_length = max_summary_length
self._max_input_tokens = max_input_tokens
async def __call__(
self,
id: str | tuple[str, str],
descriptions: list[str],
) -> SummarizationResult:
"""Call method definition."""
result = ""
if len(descriptions) == 0:
result = ""
elif len(descriptions) == 1:
result = descriptions[0]
else:
result = await self._summarize_descriptions(id, descriptions)
return SummarizationResult(
id=id,
description=result or "",
)
async def _summarize_descriptions(
self, id: str | tuple[str, str], descriptions: list[str]
) -> str:
"""Summarize descriptions into a single description."""
sorted_id = sorted(id) if isinstance(id, list) else id
# Safety check, should always be a list
if not isinstance(descriptions, list):
descriptions = [descriptions]
# Sort description lists
if len(descriptions) > 1:
descriptions = sorted(descriptions)
# Iterate over descriptions, adding all until the max input tokens is reached
usable_tokens = self._max_input_tokens - num_tokens_from_string(
self._summarization_prompt
)
descriptions_collected = []
result = ""
for i, description in enumerate(descriptions):
usable_tokens -= num_tokens_from_string(description)
descriptions_collected.append(description)
# If buffer is full, or all descriptions have been added, summarize
if (usable_tokens < 0 and len(descriptions_collected) > 1) or (
i == len(descriptions) - 1
):
# Calculate result (final or partial)
result = await self._summarize_descriptions_with_llm(
sorted_id, descriptions_collected
)
# If we go for another loop, reset values to new
if i != len(descriptions) - 1:
descriptions_collected = [result]
usable_tokens = (
self._max_input_tokens
- num_tokens_from_string(self._summarization_prompt)
- num_tokens_from_string(result)
)
return result
async def _summarize_descriptions_with_llm(
self, id: str | tuple[str, str] | list[str], descriptions: list[str]
):
"""Summarize descriptions using the LLM."""
response = await self._model.achat(
self._summarization_prompt.format(**{
ENTITY_NAME_KEY: json.dumps(id, ensure_ascii=False),
DESCRIPTION_LIST_KEY: json.dumps(
sorted(descriptions), ensure_ascii=False
),
MAX_LENGTH_KEY: self._max_summary_length,
}),
name="summarize",
)
# Calculate result
return str(response.output.content)