graphrag/tests/verbs/test_extract_graph.py
Nathan Evans eb0dfe376b
Remove strategy dicts (#2090)
* Remove "strategy" from community reports config/workflow

* Remove extraction strategy from extract_graph

* Remove summarization strategy from extract_graph

* Remove strategy from claim extraction

* Strongly type prompt templates

* Remove strategy from embed_text

* Push hydrated params into community report workflows

* Push hyrdated params into extract covariates

* Push hydrated params into extract graph NLP

* Push hydrated params into extract graph

* Push hydrated params into text embeddings

* Remove a few more low-level defaults

* Semver

* Remove configurable prompt delimiters

* Update smoke tests
2025-10-10 12:15:23 -07:00

76 lines
2.8 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.config.enums import ModelType
from graphrag.index.workflows.extract_graph import (
run_workflow,
)
from graphrag.utils.storage import load_table_from_storage
from .util import (
DEFAULT_CHAT_MODEL_CONFIG,
DEFAULT_EMBEDDING_MODEL_CONFIG,
create_test_context,
)
MOCK_LLM_ENTITY_RESPONSES = [
"""
("entity"<|>COMPANY_A<|>COMPANY<|>Company_A is a test company)
##
("entity"<|>COMPANY_B<|>COMPANY<|>Company_B owns Company_A and also shares an address with Company_A)
##
("entity"<|>PERSON_C<|>PERSON<|>Person_C is director of Company_A)
##
("relationship"<|>COMPANY_A<|>COMPANY_B<|>Company_A and Company_B are related because Company_A is 100% owned by Company_B and the two companies also share the same address)<|>2)
##
("relationship"<|>COMPANY_A<|>PERSON_C<|>Company_A and Person_C are related because Person_C is director of Company_A<|>1))
""".strip()
]
MOCK_LLM_SUMMARIZATION_RESPONSES = [
"""
This is a MOCK response for the LLM. It is summarized!
""".strip()
]
async def test_extract_graph():
context = await create_test_context(
storage=["text_units"],
)
extraction_model = DEFAULT_CHAT_MODEL_CONFIG.copy()
extraction_model["type"] = ModelType.MockChat
extraction_model["responses"] = MOCK_LLM_ENTITY_RESPONSES # type: ignore
config = create_graphrag_config({
"models": {
"default_chat_model": extraction_model,
"default_embedding_model": DEFAULT_EMBEDDING_MODEL_CONFIG,
}
})
summarize_llm_settings = config.get_language_model_config(
config.summarize_descriptions.model_id
).model_dump()
summarize_llm_settings["type"] = ModelType.MockChat
summarize_llm_settings["responses"] = MOCK_LLM_SUMMARIZATION_RESPONSES
config.summarize_descriptions.max_input_tokens = 1000
config.summarize_descriptions.max_length = 100
await run_workflow(config, context)
nodes_actual = await load_table_from_storage("entities", context.output_storage)
edges_actual = await load_table_from_storage(
"relationships", context.output_storage
)
assert len(nodes_actual.columns) == 5
assert len(edges_actual.columns) == 5
# TODO: with the combined verb we can't force summarization
# this is because the mock responses always result in a single description, which is returned verbatim rather than summarized
# we need to update the mocking to provide somewhat unique graphs so a true merge happens
# the assertion should grab a node and ensure the description matches the mock description, not the original as we are doing below
assert nodes_actual["description"].to_numpy()[0] == "Company_A is a test company"