graphrag/tests/verbs/test_create_base_text_units.py
Dayenne Souza b94290ec2b
add option to add metadata into text chunks (#1681)
* add new options

* add metadata json into input document

* remove doc change

* add metadata column into text loader

* prepend_metadata

* run fix

* fix tests and patch

* fix test

* add watrning for metadata tokens > config size

* fix typo and run fix

* fix test_integration

* fix test

* run check

* rename and fix chunking

* fix

* fix

* fiz test verbs

* fix

* fix tests

* fix chunking

* fix index

* fix cosmos test

* fix vars

* fix after PR

* fix
2025-02-12 09:38:03 -08:00

77 lines
2.4 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from graphrag.callbacks.noop_workflow_callbacks import NoopWorkflowCallbacks
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.index.workflows.create_base_text_units import run_workflow
from graphrag.utils.storage import load_table_from_storage
from .util import (
DEFAULT_MODEL_CONFIG,
compare_outputs,
create_test_context,
load_test_table,
)
async def test_create_base_text_units():
expected = load_test_table("text_units")
context = await create_test_context()
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
await run_workflow(
config,
context,
NoopWorkflowCallbacks(),
)
actual = await load_table_from_storage("text_units", context.storage)
compare_outputs(actual, expected, columns=["text", "document_ids", "n_tokens"])
async def test_create_base_text_units_metadata():
expected = load_test_table("text_units_metadata")
context = await create_test_context()
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
# test data was created with 4o, so we need to match the encoding for chunks to be identical
config.chunks.encoding_model = "o200k_base"
config.input.metadata = ["title"]
config.chunks.prepend_metadata = True
await run_workflow(
config,
context,
NoopWorkflowCallbacks(),
)
actual = await load_table_from_storage("text_units", context.storage)
compare_outputs(actual, expected)
async def test_create_base_text_units_metadata_included_in_chunk():
expected = load_test_table("text_units_metadata_included_chunk")
context = await create_test_context()
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
# test data was created with 4o, so we need to match the encoding for chunks to be identical
config.chunks.encoding_model = "o200k_base"
config.input.metadata = ["title"]
config.chunks.prepend_metadata = True
config.chunks.chunk_size_includes_metadata = True
await run_workflow(
config,
context,
NoopWorkflowCallbacks(),
)
actual = await load_table_from_storage("text_units", context.storage)
# only check the columns from the base workflow - our expected table is the final and will have more
compare_outputs(actual, expected, columns=["text", "document_ids", "n_tokens"])