graphrag/tests/unit/config/test_config.py
Derek Worthen c644338bae
Refactor config (#1593)
* Refactor config

- Add new ModelConfig to represent LLM settings
    - Combines LLMParameters, ParallelizationParameters, encoding_model, and async_mode
- Add top level models config that is a list of available LLM ModelConfigs
- Remove LLMConfig inheritance and delete LLMConfig
    - Replace the inheritance with a model_id reference to the ModelConfig listed in the top level models config
- Remove all fallbacks and hydration logic from create_graphrag_config
    - This removes the automatic env variable overrides
- Support env variables within config files using Templating
    - This requires "$" to be escaped with extra "$" so ".*\\.txt$" becomes ".*\\.txt$$"
- Update init content to initialize new config file with the ModelConfig structure

* Use dict of ModelConfig instead of list

* Add model validations and unit tests

* Fix ruff checks

* Add semversioner change

* Fix unit tests

* validate root_dir in pydantic model

* Rename ModelConfig to LanguageModelConfig

* Rename ModelConfigMissingError to LanguageModelConfigMissingError

* Add validationg for unexpected API keys

* Allow skipping pydantic validation for testing/mocking purposes.

* Add default lm configs to verb tests

* smoke test

* remove config from flows to fix llm arg mapping

* Fix embedding llm arg mapping

* Remove timestamp from smoke test outputs

* Remove unused "subworkflows" smoke test properties

* Add models to smoke test configs

* Update smoke test output path

* Send logs to logs folder

* Fix output path

* Fix csv test file pattern

* Update placeholder

* Format

* Instantiate default model configs

* Fix unit tests for config defaults

* Fix migration notebook

* Remove create_pipeline_config

* Remove several unused config models

* Remove indexing embedding and input configs

* Move embeddings function to config

* Remove skip_workflows

* Remove skip embeddings in favor of explicit naming

* fix unit test spelling mistake

* self.models[model_id] is already a language model. Remove redundant casting.

* update validation errors to instruct users to rerun graphrag init

* instantiate LanguageModelConfigs with validation

* skip validation in unit tests

* update verb tests to use default model settings instead of skipping validation

* test using llm settings

* cleanup verb tests

* remove unsafe default model config

* remove the ability to skip pydantic validation

* remove None union types when default values are set

* move vector_store from embeddings to top level of config and delete resolve_paths

* update vector store settings

* fix vector store and smoke tests

* fix serializing vector_store settings

* fix vector_store usage

* fix vector_store type

* support cli overrides for loading graphrag config

* rename storage to output

* Add --force flag to init

* Remove run_id and resume, fix Drift config assignment

* Ruff

---------

Co-authored-by: Nathan Evans <github@talkswithnumbers.com>
Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-01-21 17:52:06 -06:00

169 lines
5.7 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
import os
from pathlib import Path
from unittest import mock
import pytest
from pydantic import ValidationError
import graphrag.config.defaults as defs
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.config.enums import AzureAuthType, LLMType
from graphrag.config.load_config import load_config
from tests.unit.config.utils import (
DEFAULT_EMBEDDING_MODEL_CONFIG,
DEFAULT_MODEL_CONFIG,
FAKE_API_KEY,
assert_graphrag_configs,
get_default_graphrag_config,
)
def test_missing_openai_required_api_key() -> None:
model_config_missing_api_key = {
defs.DEFAULT_CHAT_MODEL_ID: {
"type": LLMType.OpenAIChat,
"model": defs.LLM_MODEL,
},
defs.DEFAULT_EMBEDDING_MODEL_ID: DEFAULT_EMBEDDING_MODEL_CONFIG,
}
# API Key required for OpenAIChat
with pytest.raises(ValidationError):
create_graphrag_config({"models": model_config_missing_api_key})
# API Key required for OpenAIEmbedding
model_config_missing_api_key[defs.DEFAULT_CHAT_MODEL_ID]["type"] = (
LLMType.OpenAIEmbedding
)
with pytest.raises(ValidationError):
create_graphrag_config({"models": model_config_missing_api_key})
def test_missing_azure_api_key() -> None:
model_config_missing_api_key = {
defs.DEFAULT_CHAT_MODEL_ID: {
"type": LLMType.AzureOpenAIChat,
"azure_auth_type": AzureAuthType.APIKey,
"model": defs.LLM_MODEL,
"api_base": "some_api_base",
"api_version": "some_api_version",
"deployment_name": "some_deployment_name",
},
defs.DEFAULT_EMBEDDING_MODEL_ID: DEFAULT_EMBEDDING_MODEL_CONFIG,
}
with pytest.raises(ValidationError):
create_graphrag_config({"models": model_config_missing_api_key})
# API Key not required for managed identity
model_config_missing_api_key[defs.DEFAULT_CHAT_MODEL_ID]["azure_auth_type"] = (
AzureAuthType.ManagedIdentity
)
create_graphrag_config({"models": model_config_missing_api_key})
def test_conflicting_azure_api_key() -> None:
model_config_conflicting_api_key = {
defs.DEFAULT_CHAT_MODEL_ID: {
"type": LLMType.AzureOpenAIChat,
"azure_auth_type": AzureAuthType.ManagedIdentity,
"model": defs.LLM_MODEL,
"api_base": "some_api_base",
"api_version": "some_api_version",
"deployment_name": "some_deployment_name",
"api_key": "THIS_SHOULD_NOT_BE_SET_WHEN_USING_MANAGED_IDENTITY",
},
defs.DEFAULT_EMBEDDING_MODEL_ID: DEFAULT_EMBEDDING_MODEL_CONFIG,
}
with pytest.raises(ValidationError):
create_graphrag_config({"models": model_config_conflicting_api_key})
base_azure_model_config = {
"type": LLMType.AzureOpenAIChat,
"azure_auth_type": AzureAuthType.ManagedIdentity,
"model": defs.LLM_MODEL,
"api_base": "some_api_base",
"api_version": "some_api_version",
"deployment_name": "some_deployment_name",
}
def test_missing_azure_api_base() -> None:
missing_api_base_config = base_azure_model_config.copy()
del missing_api_base_config["api_base"]
with pytest.raises(ValidationError):
create_graphrag_config({
"models": {
defs.DEFAULT_CHAT_MODEL_ID: missing_api_base_config,
defs.DEFAULT_EMBEDDING_MODEL_ID: DEFAULT_EMBEDDING_MODEL_CONFIG,
}
})
def test_missing_azure_api_version() -> None:
missing_api_version_config = base_azure_model_config.copy()
del missing_api_version_config["api_version"]
with pytest.raises(ValidationError):
create_graphrag_config({
"models": {
defs.DEFAULT_CHAT_MODEL_ID: missing_api_version_config,
defs.DEFAULT_EMBEDDING_MODEL_ID: DEFAULT_EMBEDDING_MODEL_CONFIG,
}
})
def test_missing_azure_deployment_name() -> None:
missing_deployment_name_config = base_azure_model_config.copy()
del missing_deployment_name_config["deployment_name"]
with pytest.raises(ValidationError):
create_graphrag_config({
"models": {
defs.DEFAULT_CHAT_MODEL_ID: missing_deployment_name_config,
defs.DEFAULT_EMBEDDING_MODEL_ID: DEFAULT_EMBEDDING_MODEL_CONFIG,
}
})
def test_default_config() -> None:
expected = get_default_graphrag_config()
actual = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
assert_graphrag_configs(actual, expected)
@mock.patch.dict(os.environ, {"CUSTOM_API_KEY": FAKE_API_KEY}, clear=True)
def test_load_minimal_config() -> None:
cwd = Path(__file__).parent
root_dir = (cwd / "fixtures" / "minimal_config").resolve()
expected = get_default_graphrag_config(str(root_dir))
actual = load_config(root_dir=root_dir)
assert_graphrag_configs(actual, expected)
@mock.patch.dict(os.environ, {"CUSTOM_API_KEY": FAKE_API_KEY}, clear=True)
def test_load_config_with_cli_overrides() -> None:
cwd = Path(__file__).parent
root_dir = (cwd / "fixtures" / "minimal_config").resolve()
output_dir = "some_output_dir"
expected_output_base_dir = root_dir / output_dir
expected = get_default_graphrag_config(str(root_dir))
expected.output.base_dir = str(expected_output_base_dir)
actual = load_config(
root_dir=root_dir, cli_overrides={"output.base_dir": output_dir}
)
assert_graphrag_configs(actual, expected)
def test_load_config_missing_env_vars() -> None:
cwd = Path(__file__).parent
root_dir = (cwd / "fixtures" / "minimal_config_missing_env_var").resolve()
with pytest.raises(KeyError):
load_config(root_dir=root_dir)