graphrag/tests/verbs/util.py
Derek Worthen c644338bae
Refactor config (#1593)
* Refactor config

- Add new ModelConfig to represent LLM settings
    - Combines LLMParameters, ParallelizationParameters, encoding_model, and async_mode
- Add top level models config that is a list of available LLM ModelConfigs
- Remove LLMConfig inheritance and delete LLMConfig
    - Replace the inheritance with a model_id reference to the ModelConfig listed in the top level models config
- Remove all fallbacks and hydration logic from create_graphrag_config
    - This removes the automatic env variable overrides
- Support env variables within config files using Templating
    - This requires "$" to be escaped with extra "$" so ".*\\.txt$" becomes ".*\\.txt$$"
- Update init content to initialize new config file with the ModelConfig structure

* Use dict of ModelConfig instead of list

* Add model validations and unit tests

* Fix ruff checks

* Add semversioner change

* Fix unit tests

* validate root_dir in pydantic model

* Rename ModelConfig to LanguageModelConfig

* Rename ModelConfigMissingError to LanguageModelConfigMissingError

* Add validationg for unexpected API keys

* Allow skipping pydantic validation for testing/mocking purposes.

* Add default lm configs to verb tests

* smoke test

* remove config from flows to fix llm arg mapping

* Fix embedding llm arg mapping

* Remove timestamp from smoke test outputs

* Remove unused "subworkflows" smoke test properties

* Add models to smoke test configs

* Update smoke test output path

* Send logs to logs folder

* Fix output path

* Fix csv test file pattern

* Update placeholder

* Format

* Instantiate default model configs

* Fix unit tests for config defaults

* Fix migration notebook

* Remove create_pipeline_config

* Remove several unused config models

* Remove indexing embedding and input configs

* Move embeddings function to config

* Remove skip_workflows

* Remove skip embeddings in favor of explicit naming

* fix unit test spelling mistake

* self.models[model_id] is already a language model. Remove redundant casting.

* update validation errors to instruct users to rerun graphrag init

* instantiate LanguageModelConfigs with validation

* skip validation in unit tests

* update verb tests to use default model settings instead of skipping validation

* test using llm settings

* cleanup verb tests

* remove unsafe default model config

* remove the ability to skip pydantic validation

* remove None union types when default values are set

* move vector_store from embeddings to top level of config and delete resolve_paths

* update vector store settings

* fix vector store and smoke tests

* fix serializing vector_store settings

* fix vector_store usage

* fix vector_store type

* support cli overrides for loading graphrag config

* rename storage to output

* Add --force flag to init

* Remove run_id and resume, fix Drift config assignment

* Ruff

---------

Co-authored-by: Nathan Evans <github@talkswithnumbers.com>
Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-01-21 17:52:06 -06:00

81 lines
2.6 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
import pandas as pd
from pandas.testing import assert_series_equal
import graphrag.config.defaults as defs
from graphrag.index.context import PipelineRunContext
from graphrag.index.run.utils import create_run_context
from graphrag.utils.storage import write_table_to_storage
pd.set_option("display.max_columns", None)
FAKE_API_KEY = "NOT_AN_API_KEY"
DEFAULT_CHAT_MODEL_CONFIG = {
"api_key": FAKE_API_KEY,
"type": defs.LLM_TYPE.value,
"model": defs.LLM_MODEL,
}
DEFAULT_EMBEDDING_MODEL_CONFIG = {
"api_key": FAKE_API_KEY,
"type": defs.EMBEDDING_TYPE.value,
"model": defs.EMBEDDING_MODEL,
}
DEFAULT_MODEL_CONFIG = {
defs.DEFAULT_CHAT_MODEL_ID: DEFAULT_CHAT_MODEL_CONFIG,
defs.DEFAULT_EMBEDDING_MODEL_ID: DEFAULT_EMBEDDING_MODEL_CONFIG,
}
async def create_test_context(storage: list[str] | None = None) -> PipelineRunContext:
"""Create a test context with tables loaded into storage storage."""
context = create_run_context(None, None, None)
# always set the input docs
input = load_test_table("source_documents")
await write_table_to_storage(input, "input", context.storage)
if storage:
for name in storage:
table = load_test_table(name)
# normal storage interface insists on bytes
await write_table_to_storage(table, name, context.storage)
return context
def load_test_table(output: str) -> pd.DataFrame:
"""Pass in the workflow output (generally the workflow name)"""
return pd.read_parquet(f"tests/verbs/data/{output}.parquet")
def compare_outputs(
actual: pd.DataFrame, expected: pd.DataFrame, columns: list[str] | None = None
) -> None:
"""Compare the actual and expected dataframes, optionally specifying columns to compare.
This uses assert_series_equal since we are sometimes intentionally omitting columns from the actual output.
"""
cols = expected.columns if columns is None else columns
assert len(actual) == len(expected), (
f"Expected: {len(expected)} rows, Actual: {len(actual)} rows"
)
for column in cols:
assert column in actual.columns
try:
# dtypes can differ since the test data is read from parquet and our workflow runs in memory
assert_series_equal(
actual[column], expected[column], check_dtype=False, check_index=False
)
except AssertionError:
print("Expected:")
print(expected[column])
print("Actual:")
print(actual[column])
raise